YingxuHe commited on
Commit
1eb7880
·
verified ·
1 Parent(s): da4de03

Upload config

Browse files
Files changed (2) hide show
  1. config.json +5 -9
  2. configuration_meralion.py +5 -434
config.json CHANGED
@@ -1,10 +1,7 @@
1
  {
2
- "architectures": [
3
- "MERaLiONForConditionalGeneration"
4
- ],
5
  "auto_map": {
6
- "AutoConfig": "configuration_meralion.MERaLiONConfig",
7
- "AutoModelForSpeechSeq2Seq": "modeling_meralion.MERaLiONForConditionalGeneration"
8
  },
9
  "head_dim": 256,
10
  "hidden_size": 3584,
@@ -51,7 +48,7 @@
51
  ],
52
  "mask_time_length": 20,
53
  "max_length": 448,
54
- "model_type": "meralion_speech_encoder",
55
  "num_hidden_layers": 32,
56
  "num_mel_bins": 80,
57
  "pad_token_id": 50257,
@@ -159,13 +156,12 @@
159
  "hidden_act": "gelu_pytorch_tanh",
160
  "hidden_size": 3584,
161
  "intermediate_size": 14336,
162
- "model_type": "meralion_text_decoder",
163
  "num_hidden_layers": 42,
164
  "num_key_value_heads": 8,
165
  "query_pre_attn_scalar": 256,
166
  "sliding_window_size": 4096,
167
  "torch_dtype": "bfloat16"
168
  },
169
- "torch_dtype": "bfloat16",
170
  "transformers_version": "4.46.3"
171
- }
 
1
  {
2
+ "_attn_implementation_autoset": true,
 
 
3
  "auto_map": {
4
+ "AutoConfig": "configuration_meralion.MERaLiONConfig"
 
5
  },
6
  "head_dim": 256,
7
  "hidden_size": 3584,
 
48
  ],
49
  "mask_time_length": 20,
50
  "max_length": 448,
51
+ "model_type": "whisper",
52
  "num_hidden_layers": 32,
53
  "num_mel_bins": 80,
54
  "pad_token_id": 50257,
 
156
  "hidden_act": "gelu_pytorch_tanh",
157
  "hidden_size": 3584,
158
  "intermediate_size": 14336,
159
+ "model_type": "gemma2",
160
  "num_hidden_layers": 42,
161
  "num_key_value_heads": 8,
162
  "query_pre_attn_scalar": 256,
163
  "sliding_window_size": 4096,
164
  "torch_dtype": "bfloat16"
165
  },
 
166
  "transformers_version": "4.46.3"
167
+ }
configuration_meralion.py CHANGED
@@ -1,442 +1,13 @@
1
  """MERaLiON AudioLLM model configuration"""
2
 
3
- from collections import OrderedDict
4
- from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
5
-
6
  from transformers.configuration_utils import PretrainedConfig
7
- from transformers.onnx import OnnxConfig
8
  from transformers.utils import logging
9
 
10
 
11
- if TYPE_CHECKING:
12
- from transformers.feature_extraction_utils import FeatureExtractionMixin
13
- from transformers.tokenization_utils_base import PreTrainedTokenizerBase
14
- from transformers.utils import TensorType
15
-
16
-
17
  logger = logging.get_logger(__name__)
18
 
19
 
20
- # fmt: off
21
- NON_SPEECH_TOKENS = [
22
- 1, 2, 7, 8, 9, 10, 14, 25,
23
- 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
24
- 63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
25
- 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
26
- 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
27
- 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
28
- 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
29
- 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
30
- 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
31
- ]
32
- NON_SPEECH_TOKENS_MULTI = [
33
- 1, 2, 7, 8, 9, 10, 14, 25,
34
- 26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
35
- 63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
36
- 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
37
- 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
38
- 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
39
- 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
40
- 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
41
- 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
42
- ]
43
- # fmt: on
44
-
45
- # Copied from transformers.models.whisper.configuration_whisper.WhisperConfig
46
- class MERaLiONSpeechConfig(PretrainedConfig):
47
- r"""
48
- This is the configuration class to store the configuration of a [`MERaLiONSpeechModel`]. It is used to instantiate a
49
- MERaLiONSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration
50
- with the defaults will yield a similar configuration to that of the MERaLiONSpeech
51
- [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
52
-
53
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
54
- documentation from [`PretrainedConfig`] for more information.
55
-
56
-
57
- Args:
58
- vocab_size (`int`, *optional*, defaults to 51865):
59
- Vocabulary size of the MERaLiONSpeech model. Defines the number of different tokens that can be represented by the
60
- `decoder_input_ids` passed when calling [`MERaLiONSpeechModel`]
61
- num_mel_bins (`int`, *optional*, defaults to 80):
62
- Number of mel features used per input features. Should correspond to the value used in the
63
- `MERaLiONSpeechProcessor` class.
64
- encoder_layers (`int`, *optional*, defaults to 4):
65
- Number of encoder layers.
66
- decoder_layers (`int`, *optional*, defaults to 4):
67
- Number of decoder layers.
68
- encoder_attention_heads (`int`, *optional*, defaults to 6):
69
- Number of attention heads for each attention layer in the Transformer encoder.
70
- decoder_attention_heads (`int`, *optional*, defaults to 6):
71
- Number of attention heads for each attention layer in the Transformer decoder.
72
- encoder_ffn_dim (`int`, *optional*, defaults to 1536):
73
- Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
74
- decoder_ffn_dim (`int`, *optional*, defaults to 1536):
75
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
76
- encoder_layerdrop (`float`, *optional*, defaults to 0.0):
77
- The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
78
- for more details.
79
- decoder_layerdrop (`float`, *optional*, defaults to 0.0):
80
- The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
81
- for more details.
82
- decoder_start_token_id (`int`, *optional*, defaults to 50257):
83
- Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
84
- are provided to the `generate` function. It is used to guide the model`s generation process depending on
85
- the task.
86
- use_cache (`bool`, *optional*, defaults to `True`):
87
- Whether or not the model should return the last key/values attentions (not used by all models).
88
- is_encoder_decoder (`bool`, *optional*, defaults to `True`):
89
- Whether the model is used as an encoder/decoder or not.
90
- activation_function (`str`, *optional*, defaults to `"gelu"`):
91
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
92
- `"relu"`, `"silu"` and `"gelu_new"` are supported.
93
- d_model (`int`, *optional*, defaults to 384):
94
- Dimensionality of the layers.
95
- dropout (`float`, *optional*, defaults to 0.1):
96
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
97
- attention_dropout (`float`, *optional*, defaults to 0.0):
98
- The dropout ratio for the attention probabilities.
99
- activation_dropout (`float`, *optional*, defaults to 0.0):
100
- The dropout ratio for activations inside the fully connected layer.
101
- init_std (`float`, *optional*, defaults to 0.02):
102
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
103
- scale_embedding (`bool`, *optional*, defaults to False):
104
- Scale embeddings by diving by sqrt(d_model).
105
- max_source_positions (`int`, *optional*, defaults to 1500):
106
- The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
107
- max_target_positions (`int`, *optional*, defaults to 448):
108
- The maximum sequence length that this model might ever be used with. Typically set this to something large
109
- just in case (e.g., 512 or 1024 or 2048).
110
- pad_token_id (`int`, *optional*, defaults to 50256):
111
- Padding token id.
112
- bos_token_id (`int`, *optional*, defaults to 50256):
113
- Begin of stream token id.
114
- eos_token_id (`int`, *optional*, defaults to 50256):
115
- End of stream token id.
116
- suppress_tokens (`List[int]`, *optional*):
117
- A list containing the non-speech tokens that will be used by the logit processor in the `generate`
118
- function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
119
- `multilingual` model.
120
- begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
121
- A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
122
- the token for `" "` (`blank_token_id`) and the `eos_token_id`
123
- use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
124
- Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
125
- instance of [`MERaLiONSpeechForAudioClassification`].
126
- classifier_proj_size (`int`, *optional*, defaults to 256):
127
- Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
128
- instance of [`MERaLiONSpeechForAudioClassification`].
129
- apply_spec_augment (`bool`, *optional*, defaults to `False`):
130
- Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
131
- [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
132
- Recognition](https://arxiv.org/abs/1904.08779).
133
- mask_time_prob (`float`, *optional*, defaults to 0.05):
134
- Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
135
- procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
136
- reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
137
- masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
138
- actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
139
- mask_time_length (`int`, *optional*, defaults to 10):
140
- Length of vector span along the time axis.
141
- mask_time_min_masks (`int`, *optional*, defaults to 2),:
142
- The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
143
- irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
144
- mask_time_min_masks''
145
- mask_feature_prob (`float`, *optional*, defaults to 0.0):
146
- Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
147
- masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
148
- the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
149
- span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
150
- may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
151
- True`.
152
- mask_feature_length (`int`, *optional*, defaults to 10):
153
- Length of vector span along the feature axis.
154
- mask_feature_min_masks (`int`, *optional*, defaults to 0),:
155
- The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
156
- step, irrespectively of `mask_feature_prob`. Only relevant if
157
- `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
158
- median_filter_width (`int`, *optional*, defaults to 7):
159
- Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
160
- Should be an odd number.
161
- """
162
-
163
- model_type = "meralion_speech_encoder"
164
- keys_to_ignore_at_inference = ["past_key_values"]
165
- attribute_map = {
166
- "num_key_value_heads": "encoder_attention_heads",
167
- "num_attention_heads": "encoder_attention_heads",
168
- "hidden_size": "d_model",
169
- }
170
-
171
- def __init__(
172
- self,
173
- vocab_size=51865,
174
- num_mel_bins=80,
175
- encoder_layers=4,
176
- encoder_attention_heads=6,
177
- decoder_layers=4,
178
- decoder_attention_heads=6,
179
- decoder_ffn_dim=1536,
180
- encoder_ffn_dim=1536,
181
- encoder_layerdrop=0.0,
182
- decoder_layerdrop=0.0,
183
- decoder_start_token_id=50257,
184
- use_cache=True,
185
- is_encoder_decoder=True,
186
- activation_function="gelu",
187
- d_model=384,
188
- dropout=0.0,
189
- attention_dropout=0.0,
190
- activation_dropout=0.0,
191
- init_std=0.02,
192
- scale_embedding=False,
193
- max_source_positions=1500,
194
- max_target_positions=448,
195
- pad_token_id=50256,
196
- bos_token_id=50256,
197
- eos_token_id=50256,
198
- suppress_tokens=None,
199
- begin_suppress_tokens=[220, 50256],
200
- use_weighted_layer_sum=False,
201
- classifier_proj_size=256,
202
- apply_spec_augment=False,
203
- mask_time_prob=0.05,
204
- mask_time_length=10,
205
- mask_time_min_masks=2,
206
- mask_feature_prob=0.0,
207
- mask_feature_length=10,
208
- mask_feature_min_masks=0,
209
- median_filter_width=7,
210
- **kwargs,
211
- ):
212
- self.vocab_size = vocab_size
213
- self.num_mel_bins = num_mel_bins
214
- self.d_model = d_model
215
- self.encoder_layers = encoder_layers
216
- self.encoder_attention_heads = encoder_attention_heads
217
- self.decoder_layers = decoder_layers
218
- self.decoder_attention_heads = decoder_attention_heads
219
- self.decoder_ffn_dim = decoder_ffn_dim
220
- self.encoder_ffn_dim = encoder_ffn_dim
221
- self.dropout = dropout
222
- self.attention_dropout = attention_dropout
223
- self.activation_dropout = activation_dropout
224
- self.activation_function = activation_function
225
- self.init_std = init_std
226
- self.encoder_layerdrop = encoder_layerdrop
227
- self.decoder_layerdrop = decoder_layerdrop
228
- self.use_cache = use_cache
229
- self.num_hidden_layers = encoder_layers
230
- self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
231
- self.max_source_positions = max_source_positions
232
- self.max_target_positions = max_target_positions
233
-
234
- # Audio Classification-specific parameters. Feel free to ignore for other classes.
235
- self.classifier_proj_size = classifier_proj_size
236
- self.use_weighted_layer_sum = use_weighted_layer_sum
237
-
238
- # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
239
- self.apply_spec_augment = apply_spec_augment
240
- self.mask_time_prob = mask_time_prob
241
- self.mask_time_length = mask_time_length
242
- self.mask_time_min_masks = mask_time_min_masks
243
- self.mask_feature_prob = mask_feature_prob
244
- self.mask_feature_length = mask_feature_length
245
- self.mask_feature_min_masks = mask_feature_min_masks
246
-
247
- self.median_filter_width = median_filter_width
248
-
249
- super().__init__(
250
- pad_token_id=pad_token_id,
251
- bos_token_id=bos_token_id,
252
- eos_token_id=eos_token_id,
253
- is_encoder_decoder=is_encoder_decoder,
254
- decoder_start_token_id=decoder_start_token_id,
255
- suppress_tokens=suppress_tokens,
256
- begin_suppress_tokens=begin_suppress_tokens,
257
- **kwargs,
258
- )
259
- @property
260
- def inputs(self) -> Mapping[str, Mapping[int, str]]:
261
- common_inputs = OrderedDict(
262
- [
263
- ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
264
- ]
265
- )
266
- if self.use_past:
267
- common_inputs["decoder_input_ids"] = {0: "batch"}
268
- else:
269
- common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
270
-
271
- if self.use_past:
272
- self.fill_with_past_key_values_(common_inputs, direction="inputs")
273
-
274
- return common_inputs
275
-
276
- def generate_dummy_inputs(
277
- self,
278
- preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
279
- batch_size: int = -1,
280
- seq_length: int = -1,
281
- is_pair: bool = False,
282
- framework: Optional["TensorType"] = None,
283
- sampling_rate: int = 22050,
284
- time_duration: float = 5.0,
285
- frequency: int = 220,
286
- ) -> Mapping[str, Any]:
287
- dummy_inputs = OrderedDict()
288
- encoder_inputs = OnnxConfig.generate_dummy_inputs(
289
- self,
290
- preprocessor=preprocessor.feature_extractor,
291
- batch_size=batch_size,
292
- framework=framework,
293
- sampling_rate=sampling_rate,
294
- time_duration=time_duration,
295
- frequency=frequency,
296
- )
297
- encoder_sequence_length = encoder_inputs["input_features"].shape[2]
298
- seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
299
-
300
- decoder_inputs = super().generate_dummy_inputs(
301
- preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
302
- )
303
-
304
- dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
305
- dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
306
-
307
- if "past_key_values" in decoder_inputs:
308
- dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
309
-
310
- return dummy_inputs
311
-
312
- @property
313
- def atol_for_validation(self) -> float:
314
- return 1e-3
315
-
316
-
317
- # Copied from transformers.models.gemma2.configuration_gemma2.Gemma2Config
318
- class MERaLiONTextConfig(PretrainedConfig):
319
- r"""
320
- This is the configuration class to store the configuration of a [`MERaLiONTextModel`]. It is used to instantiate an MERaLiONText
321
- model according to the specified arguments, defining the model architecture.
322
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
323
- documentation from [`PretrainedConfig`] for more information.
324
- Args:
325
- vocab_size (`int`, *optional*, defaults to 256000):
326
- Vocabulary size of the MERaLiONText model. Defines the number of different tokens that can be represented by the
327
- `inputs_ids` passed when calling [`MERaLiONTextModel`]
328
- hidden_size (`int`, *optional*, defaults to 3072):
329
- Dimension of the hidden representations.
330
- intermediate_size (`int`, *optional*, defaults to 24576):
331
- Dimension of the MLP representations.
332
- num_hidden_layers (`int`, *optional*, defaults to 28):
333
- Number of hidden layers in the Transformer decoder.
334
- num_attention_heads (`int`, *optional*, defaults to 16):
335
- Number of attention heads for each attention layer in the Transformer decoder.
336
- num_key_value_heads (`int`, *optional*, defaults to 16):
337
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
338
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
339
- `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
340
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
341
- by meanpooling all the original heads within that group. For more details checkout [this
342
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
343
- `num_attention_heads`.
344
- head_dim (`int`, *optional*, defaults to 256):
345
- The attention head dimension.
346
- hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
347
- The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
348
- if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
349
- max_position_embeddings (`int`, *optional*, defaults to 8192):
350
- The maximum sequence length that this model might ever be used with.
351
- initializer_range (`float`, *optional*, defaults to 0.02):
352
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
353
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
354
- The epsilon used by the rms normalization layers.
355
- use_cache (`bool`, *optional*, defaults to `True`):
356
- Whether or not the model should return the last key/values attentions (not used by all models). Only
357
- relevant if `config.is_decoder=True`.
358
- pad_token_id (`int`, *optional*, defaults to 0):
359
- Padding token id.
360
- eos_token_id (`int`, *optional*, defaults to 1):
361
- End of stream token id.
362
- bos_token_id (`int`, *optional*, defaults to 2):
363
- Beginning of stream token id.
364
- tie_word_embeddings (`bool`, *optional*, defaults to `True`):
365
- Whether to tie weight embeddings
366
- rope_theta (`float`, *optional*, defaults to 10000.0):
367
- The base period of the RoPE embeddings.
368
- attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
369
- Whether to use a bias in the query, key, value and output projection layers during self-attention.
370
- attention_dropout (`float`, *optional*, defaults to 0.0):
371
- The dropout ratio for the attention probabilities.
372
- query_pre_attn_scalar (`float`, *optional*, defaults to 224): scaling factor used on the attention scores
373
- sliding_window (`int`, *optional*, defaults to 4096): in MERaLiONText, every other layer uses sliding window attention. This is the
374
- size of the sliding window.
375
- final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
376
- attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
377
- cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
378
- """
379
-
380
- model_type = "meralion_text_decoder"
381
- keys_to_ignore_at_inference = ["past_key_values"]
382
-
383
- def __init__(
384
- self,
385
- vocab_size=256000,
386
- hidden_size=3072,
387
- intermediate_size=24576,
388
- num_hidden_layers=28,
389
- num_attention_heads=16,
390
- num_key_value_heads=16,
391
- head_dim=256,
392
- hidden_activation="gelu_pytorch_tanh",
393
- max_position_embeddings=8192,
394
- initializer_range=0.02,
395
- rms_norm_eps=1e-6,
396
- use_cache=True,
397
- pad_token_id=0,
398
- eos_token_id=1,
399
- bos_token_id=2,
400
- tie_word_embeddings=True,
401
- rope_theta=10000.0,
402
- attention_bias=False,
403
- attention_dropout=0.0,
404
- query_pre_attn_scalar=224,
405
- sliding_window=4096,
406
- final_logit_softcapping=30.0,
407
- attn_logit_softcapping=50.0,
408
- cache_implementation="hybrid",
409
- **kwargs,
410
- ):
411
- super().__init__(
412
- pad_token_id=pad_token_id,
413
- bos_token_id=bos_token_id,
414
- eos_token_id=eos_token_id,
415
- tie_word_embeddings=tie_word_embeddings,
416
- **kwargs,
417
- )
418
- self.vocab_size = vocab_size
419
- self.max_position_embeddings = max_position_embeddings
420
- self.hidden_size = hidden_size
421
- self.intermediate_size = intermediate_size
422
- self.num_hidden_layers = num_hidden_layers
423
- self.num_attention_heads = num_attention_heads
424
- self.head_dim = head_dim
425
- self.num_key_value_heads = num_key_value_heads
426
- self.initializer_range = initializer_range
427
- self.rms_norm_eps = rms_norm_eps
428
- self.use_cache = use_cache
429
- self.rope_theta = rope_theta
430
- self.attention_bias = attention_bias
431
- self.attention_dropout = attention_dropout
432
- self.hidden_activation = hidden_activation
433
- self.query_pre_attn_scalar = query_pre_attn_scalar
434
- self.sliding_window = sliding_window
435
- self.final_logit_softcapping = final_logit_softcapping
436
- self.attn_logit_softcapping = attn_logit_softcapping
437
- self.cache_implementation = cache_implementation
438
-
439
-
440
  class MERaLiONConfig(PretrainedConfig):
441
  r"""
442
  This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
@@ -468,9 +39,9 @@ class MERaLiONConfig(PretrainedConfig):
468
  ):
469
 
470
  if isinstance(speech_config, dict):
471
- speech_config = MERaLiONSpeechConfig(**speech_config)
472
  elif speech_config is None:
473
- speech_config = MERaLiONSpeechConfig(
474
  d_model=1280,
475
  encoder_attention_heads=20,
476
  encoder_ffn_dim=5120,
@@ -485,9 +56,9 @@ class MERaLiONConfig(PretrainedConfig):
485
  self.speech_config = speech_config
486
 
487
  if isinstance(text_config, dict):
488
- text_config = MERaLiONTextConfig(**text_config)
489
  elif text_config is None:
490
- text_config = MERaLiONTextConfig()
491
 
492
  self.text_config = text_config
493
 
 
1
  """MERaLiON AudioLLM model configuration"""
2
 
3
+ from transformers import Gemma2Config, WhisperConfig
 
 
4
  from transformers.configuration_utils import PretrainedConfig
 
5
  from transformers.utils import logging
6
 
7
 
 
 
 
 
 
 
8
  logger = logging.get_logger(__name__)
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  class MERaLiONConfig(PretrainedConfig):
12
  r"""
13
  This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
 
39
  ):
40
 
41
  if isinstance(speech_config, dict):
42
+ speech_config = WhisperConfig(**speech_config)
43
  elif speech_config is None:
44
+ speech_config = WhisperConfig(
45
  d_model=1280,
46
  encoder_attention_heads=20,
47
  encoder_ffn_dim=5120,
 
56
  self.speech_config = speech_config
57
 
58
  if isinstance(text_config, dict):
59
+ text_config = Gemma2Config(**text_config)
60
  elif text_config is None:
61
+ text_config = Gemma2Config()
62
 
63
  self.text_config = text_config
64