|
"""PyTorch MERaLiON AudioLLM model.""" |
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import Gemma2ForCausalLM |
|
from transformers.models.whisper.modeling_whisper import WhisperEncoder |
|
from transformers.cache_utils import HybridCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from .configuration_meralion import MERaLiONConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "MERaLiONConfig" |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
|
|
@dataclass |
|
class MERaLiONOutputWithPast(ModelOutput): |
|
""" |
|
Base class for MERaLiON causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
Attentions mask, used to update attention mask and position_ids. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
attention_mask: Optional[torch.FloatTensor] = None |
|
|
|
|
|
MERALION_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MERaLiONConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MERaLiON Model outputting raw hidden-states without any specific head on top.", |
|
MERALION_START_DOCSTRING, |
|
) |
|
class MERaLiONPreTrainedModel(PreTrainedModel): |
|
config_class = MERaLiONConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer", "Gemma2DecoderLayer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
std = self.config.init_std if hasattr(self.config, "init_std") else self.config.speech_config.init_std |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.text_decoder._supports_sdpa |
|
|
|
class MERaLiONSpeechAudioAdaper(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
**kwargs |
|
): |
|
super(MERaLiONSpeechAudioAdaper, self).__init__() |
|
speech_audio_encoder_output_dim = config.speech_config.d_model |
|
llm_input_hidden_size = config.text_config.hidden_size |
|
speech_mlp_scale_factor = config.speech_mlp_scale_factor |
|
|
|
self.speech_mlp_scale_factor = speech_mlp_scale_factor |
|
self.mlp_adapter = nn.Sequential( |
|
nn.Linear( |
|
in_features=speech_audio_encoder_output_dim * speech_mlp_scale_factor, |
|
out_features=speech_audio_encoder_output_dim |
|
), |
|
nn.SiLU(), |
|
nn.Dropout(0.1), |
|
) |
|
|
|
self.speech_llm_proj = nn.Sequential( |
|
nn.Linear( |
|
speech_audio_encoder_output_dim, |
|
speech_audio_encoder_output_dim * 4 |
|
), |
|
nn.SiLU(), |
|
nn.Dropout(0.1), |
|
|
|
nn.Linear( |
|
speech_audio_encoder_output_dim * 4, |
|
llm_input_hidden_size |
|
), |
|
) |
|
|
|
def forward(self, speech_embeds, **kwargs): |
|
B, T, C = speech_embeds.shape |
|
speech_embeds = self.mlp_adapter( |
|
speech_embeds.reshape( |
|
B, |
|
T // self.speech_mlp_scale_factor, |
|
C * self.speech_mlp_scale_factor, |
|
) |
|
) |
|
return self.speech_llm_proj(speech_embeds) |
|
|
|
|
|
MERALION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`, *optional*): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
@add_start_docstrings( |
|
"""The MERALION model which consists of a audio backbone and a language model.""", |
|
MERALION_START_DOCSTRING, |
|
) |
|
class MERaLiONForConditionalGeneration(MERaLiONPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: MERaLiONConfig): |
|
config.text_config._attn_implementation = config._attn_implementation |
|
config.speech_config._attn_implementation = config._attn_implementation |
|
|
|
super().__init__(config) |
|
|
|
self.speech_encoder = WhisperEncoder(config.speech_config) |
|
|
|
|
|
self.ln_speech = nn.LayerNorm(config.speech_config.d_model) |
|
self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.text_decoder = Gemma2ForCausalLM(config.text_config) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self._padding_side = "left" |
|
self.post_init() |
|
|
|
@property |
|
def padding_side(self): |
|
return self._padding_side |
|
|
|
@padding_side.setter |
|
def padding_side(self, padding_side: str): |
|
if padding_side not in ["left", "right"]: |
|
raise ValueError(f"{padding_side} is not `left` or `right`.") |
|
self._padding_side = padding_side |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.text_decoder.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.text_decoder.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.text_decoder.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.text_decoder.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.text_decoder.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.text_decoder.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.text_decoder.tie_weights() |
|
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.text_decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
@add_start_docstrings_to_model_forward(MERALION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MERaLiONOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
input_features: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
feature_attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MERaLiONOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
speech_encoder_device = self.speech_encoder.device |
|
|
|
if input_features is not None: |
|
input_features = input_features.to(speech_encoder_device) |
|
feature_attention_mask = feature_attention_mask.to(speech_encoder_device) |
|
|
|
if inputs_embeds is None: |
|
speech_contexts_embeds = self.speech_encoder(input_features, attention_mask=feature_attention_mask).last_hidden_state |
|
speech_contexts_embeds = self.ln_speech(speech_contexts_embeds) |
|
speech_audio_contexts_embeds = self.speech_audio_adapter(speech_contexts_embeds) |
|
|
|
inputs_embeds = self.text_decoder.base_model.embed_tokens(input_ids) |
|
|
|
speech_mask = (input_ids == self.config.speech_token_index).unsqueeze(-1) |
|
speech_mask = speech_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
inputs_embeds = inputs_embeds.masked_scatter(speech_mask, speech_audio_contexts_embeds) |
|
|
|
input_ids = None |
|
|
|
outputs = self.text_decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels |
|
) |
|
|
|
return outputs |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
input_features=None, |
|
feature_attention_mask=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
is_first_step = cache_position[0].item() == 0 |
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
|
|
if inputs_embeds is not None and is_first_step: |
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} |
|
else: |
|
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} |
|
|
|
if ( |
|
isinstance(past_key_values, HybridCache) |
|
and attention_mask.ndim == 2 |
|
and not self.config._attn_implementation == "flash_attention_2" |
|
): |
|
if model_inputs["inputs_embeds"] is not None: |
|
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape |
|
device = model_inputs["inputs_embeds"].device |
|
else: |
|
batch_size, sequence_length = model_inputs["input_ids"].shape |
|
device = model_inputs["input_ids"].device |
|
dtype = self.text_decoder.lm_head.weight.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=past_key_values.get_max_length(), |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=batch_size, |
|
) |
|
|
|
model_inputs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache |
|
} |
|
) |
|
|
|
|
|
if is_first_step: |
|
model_inputs["input_features"] = input_features |
|
model_inputs["feature_attention_mask"] = feature_attention_mask |
|
|
|
return model_inputs |
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.text_decoder._reorder_cache(*args, **kwargs) |