File size: 25,616 Bytes
3a27792
385b92d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
"""MERaLiON AudioLLM model configuration"""

from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union

from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging


if TYPE_CHECKING:
    from transformers.feature_extraction_utils import FeatureExtractionMixin
    from transformers.tokenization_utils_base import PreTrainedTokenizerBase
    from transformers.utils import TensorType


logger = logging.get_logger(__name__)


# fmt: off
NON_SPEECH_TOKENS = [
    1, 2, 7, 8, 9, 10, 14, 25,
    26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
    63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
    705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
    1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
    4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
    11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
    17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
    34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
NON_SPEECH_TOKENS_MULTI = [
    1, 2, 7, 8, 9, 10, 14, 25,
    26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
    63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
    893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
    3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
    7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
    14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
    22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
    42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
# fmt: on

# Copied from transformers.models.whisper.configuration_whisper.WhisperConfig
class MERaLiONSpeechConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MERaLiONSpeechModel`]. It is used to instantiate a
    MERaLiONSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the MERaLiONSpeech
    [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 51865):
            Vocabulary size of the MERaLiONSpeech model. Defines the number of different tokens that can be represented by the
            `decoder_input_ids` passed when calling [`MERaLiONSpeechModel`]
        num_mel_bins (`int`, *optional*, defaults to 80):
            Number of mel features used per input features. Should correspond to the value used in the
            `MERaLiONSpeechProcessor` class.
        encoder_layers (`int`, *optional*, defaults to 4):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 4):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 6):
            Number of attention heads for each attention layer in the Transformer decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_start_token_id (`int`, *optional*, defaults to 50257):
            Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
            are provided to the `generate` function. It is used to guide the model`s generation process depending on
            the task.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        is_encoder_decoder (`bool`, *optional*, defaults to `True`):
            Whether the model is used as an encoder/decoder or not.
        activation_function (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        d_model (`int`, *optional*, defaults to 384):
            Dimensionality of the layers.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        scale_embedding (`bool`, *optional*, defaults to False):
            Scale embeddings by diving by sqrt(d_model).
        max_source_positions (`int`, *optional*, defaults to 1500):
            The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
        max_target_positions (`int`, *optional*, defaults to 448):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        pad_token_id (`int`, *optional*, defaults to 50256):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 50256):
            Begin of stream token id.
        eos_token_id (`int`, *optional*, defaults to 50256):
            End of stream token id.
        suppress_tokens (`List[int]`, *optional*):
            A list containing the non-speech tokens that will be used by the logit processor in the `generate`
            function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
            `multilingual` model.
        begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
            A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
            the token for `" "` (`blank_token_id`) and the `eos_token_id`
        use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
            Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
            instance of [`MERaLiONSpeechForAudioClassification`].
        classifier_proj_size (`int`, *optional*, defaults to 256):
            Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
            instance of [`MERaLiONSpeechForAudioClassification`].
        apply_spec_augment (`bool`, *optional*, defaults to `False`):
            Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
            [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
            Recognition](https://arxiv.org/abs/1904.08779).
        mask_time_prob (`float`, *optional*, defaults to 0.05):
            Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
            procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
            reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
            masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
            actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
        mask_time_length (`int`, *optional*, defaults to 10):
            Length of vector span along the time axis.
        mask_time_min_masks (`int`, *optional*, defaults to 2),:
            The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
            irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
            mask_time_min_masks''
        mask_feature_prob (`float`, *optional*, defaults to 0.0):
            Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
            masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
            the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
            span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
            may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
            True`.
        mask_feature_length (`int`, *optional*, defaults to 10):
            Length of vector span along the feature axis.
        mask_feature_min_masks (`int`, *optional*, defaults to 0),:
            The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
            step, irrespectively of `mask_feature_prob`. Only relevant if
            `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
        median_filter_width (`int`, *optional*, defaults to 7):
            Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
            Should be an odd number.
    """

    model_type = "meralion_speech_encoder"
    keys_to_ignore_at_inference = ["past_key_values"]
    attribute_map = {
        "num_key_value_heads": "encoder_attention_heads",
        "num_attention_heads": "encoder_attention_heads",
        "hidden_size": "d_model",
    }

    def __init__(
        self,
        vocab_size=51865,
        num_mel_bins=80,
        encoder_layers=4,
        encoder_attention_heads=6,
        decoder_layers=4,
        decoder_attention_heads=6,
        decoder_ffn_dim=1536,
        encoder_ffn_dim=1536,
        encoder_layerdrop=0.0,
        decoder_layerdrop=0.0,
        decoder_start_token_id=50257,
        use_cache=True,
        is_encoder_decoder=True,
        activation_function="gelu",
        d_model=384,
        dropout=0.0,
        attention_dropout=0.0,
        activation_dropout=0.0,
        init_std=0.02,
        scale_embedding=False,
        max_source_positions=1500,
        max_target_positions=448,
        pad_token_id=50256,
        bos_token_id=50256,
        eos_token_id=50256,
        suppress_tokens=None,
        begin_suppress_tokens=[220, 50256],
        use_weighted_layer_sum=False,
        classifier_proj_size=256,
        apply_spec_augment=False,
        mask_time_prob=0.05,
        mask_time_length=10,
        mask_time_min_masks=2,
        mask_feature_prob=0.0,
        mask_feature_length=10,
        mask_feature_min_masks=0,
        median_filter_width=7,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.num_mel_bins = num_mel_bins
        self.d_model = d_model
        self.encoder_layers = encoder_layers
        self.encoder_attention_heads = encoder_attention_heads
        self.decoder_layers = decoder_layers
        self.decoder_attention_heads = decoder_attention_heads
        self.decoder_ffn_dim = decoder_ffn_dim
        self.encoder_ffn_dim = encoder_ffn_dim
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.encoder_layerdrop = encoder_layerdrop
        self.decoder_layerdrop = decoder_layerdrop
        self.use_cache = use_cache
        self.num_hidden_layers = encoder_layers
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.max_source_positions = max_source_positions
        self.max_target_positions = max_target_positions

        # Audio Classification-specific parameters. Feel free to ignore for other classes.
        self.classifier_proj_size = classifier_proj_size
        self.use_weighted_layer_sum = use_weighted_layer_sum

        # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
        self.apply_spec_augment = apply_spec_augment
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
        self.mask_time_min_masks = mask_time_min_masks
        self.mask_feature_prob = mask_feature_prob
        self.mask_feature_length = mask_feature_length
        self.mask_feature_min_masks = mask_feature_min_masks

        self.median_filter_width = median_filter_width

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            is_encoder_decoder=is_encoder_decoder,
            decoder_start_token_id=decoder_start_token_id,
            suppress_tokens=suppress_tokens,
            begin_suppress_tokens=begin_suppress_tokens,
            **kwargs,
        )
    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        common_inputs = OrderedDict(
            [
                ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
            ]
        )
        if self.use_past:
            common_inputs["decoder_input_ids"] = {0: "batch"}
        else:
            common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}

        if self.use_past:
            self.fill_with_past_key_values_(common_inputs, direction="inputs")

        return common_inputs

    def generate_dummy_inputs(
        self,
        preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
        batch_size: int = -1,
        seq_length: int = -1,
        is_pair: bool = False,
        framework: Optional["TensorType"] = None,
        sampling_rate: int = 22050,
        time_duration: float = 5.0,
        frequency: int = 220,
    ) -> Mapping[str, Any]:
        dummy_inputs = OrderedDict()
        encoder_inputs = OnnxConfig.generate_dummy_inputs(
            self,
            preprocessor=preprocessor.feature_extractor,
            batch_size=batch_size,
            framework=framework,
            sampling_rate=sampling_rate,
            time_duration=time_duration,
            frequency=frequency,
        )
        encoder_sequence_length = encoder_inputs["input_features"].shape[2]
        seq_length = encoder_sequence_length // 2 if self.use_past else seq_length

        decoder_inputs = super().generate_dummy_inputs(
            preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
        )

        dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
        dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")

        if "past_key_values" in decoder_inputs:
            dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")

        return dummy_inputs

    @property
    def atol_for_validation(self) -> float:
        return 1e-3
    

# Copied from transformers.models.gemma2.configuration_gemma2.Gemma2Config
class MERaLiONTextConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MERaLiONTextModel`]. It is used to instantiate an MERaLiONText
    model according to the specified arguments, defining the model architecture. 
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 256000):
            Vocabulary size of the MERaLiONText model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MERaLiONTextModel`]
        hidden_size (`int`, *optional*, defaults to 3072):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 24576):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 28):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 16):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 256):
            The attention head dimension.
        hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
            if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
        max_position_embeddings (`int`, *optional*, defaults to 8192):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 0):
            Padding token id.
        eos_token_id (`int`, *optional*, defaults to 1):
            End of stream token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        query_pre_attn_scalar (`float`, *optional*, defaults to 224): scaling factor used on the attention scores
        sliding_window (`int`, *optional*, defaults to 4096): in MERaLiONText, every other layer uses sliding window attention. This is the
            size of the sliding window.
        final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
        attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
        cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
    """

    model_type = "meralion_text_decoder"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=256000,
        hidden_size=3072,
        intermediate_size=24576,
        num_hidden_layers=28,
        num_attention_heads=16,
        num_key_value_heads=16,
        head_dim=256,
        hidden_activation="gelu_pytorch_tanh",
        max_position_embeddings=8192,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        eos_token_id=1,
        bos_token_id=2,
        tie_word_embeddings=True,
        rope_theta=10000.0,
        attention_bias=False,
        attention_dropout=0.0,
        query_pre_attn_scalar=224,
        sliding_window=4096,
        final_logit_softcapping=30.0,
        attn_logit_softcapping=50.0,
        cache_implementation="hybrid",
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.head_dim = head_dim
        self.num_key_value_heads = num_key_value_heads
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.hidden_activation = hidden_activation
        self.query_pre_attn_scalar = query_pre_attn_scalar
        self.sliding_window = sliding_window
        self.final_logit_softcapping = final_logit_softcapping
        self.attn_logit_softcapping = attn_logit_softcapping
        self.cache_implementation = cache_implementation


class MERaLiONConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MERaLiONForConditionalGeneration`]. It is used to instantiate an
    MERaLiON model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the MERaLiON.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        audio_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `CLIPVisionConfig`):
            The config object or dictionary of the audio backbone.
        text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
            The config object or dictionary of the text backbone.
        audio_token_index (`int`, *optional*, defaults to 151646):
            The image token index to encode the image prompt.
    """

    model_type = "meralion"
    is_composition = False

    def __init__(
        self,
        speech_config=None,
        text_config=None,
        speech_mlp_scale_factor=15,
        speech_token_index=255999,
        **kwargs,
    ):
        
        if isinstance(speech_config, dict):
            speech_config = MERaLiONSpeechConfig(**speech_config)
        elif speech_config is None:
            speech_config = MERaLiONSpeechConfig(
                d_model=1280,
                encoder_attention_heads=20,
                encoder_ffn_dim=5120,
                encoder_layerdrop=0.0,
                encoder_layers=32,
                num_mel_bins=128,
                max_source_positions=1500,
                scale_embedding=False,
                activation_function="gelu",
            )

        self.speech_config = speech_config

        if isinstance(text_config, dict):
            text_config = MERaLiONTextConfig(**text_config)
        elif text_config is None:
            text_config = MERaLiONTextConfig()

        self.text_config = text_config

        self.speech_mlp_scale_factor = speech_mlp_scale_factor
        self.speech_token_index = speech_token_index
        
        self.sliding_window = self.text_config.sliding_window
        self.hidden_size = self.text_config.hidden_size
        self.num_attention_heads = self.text_config.num_attention_heads
        self.num_hidden_layers = self.text_config.num_hidden_layers
        self.num_key_value_heads = self.text_config.num_key_value_heads
        self.head_dim = self.text_config.head_dim
        self.intermediate_size = self.text_config.intermediate_size
        
        super().__init__(**kwargs)