File size: 23,294 Bytes
30951e5 5cd6cd7 30951e5 db9bd92 900c2aa 30951e5 8816e37 30951e5 f106958 30951e5 a29dcac 3e08ac3 b5e196d 4ae2931 5cd6cd7 b5e196d 6b1edc8 3e08ac3 5cd6cd7 b5e196d 4ae2931 5cd6cd7 30951e5 385b92d 790450f 385b92d a6099b9 385b92d 4fa06ea 385b92d d08ae83 348431a 2818fd1 900c2aa 70b9712 735299c 251bc20 0b80915 385b92d 790450f 385b92d a6099b9 385b92d ba814b7 385b92d ba814b7 385b92d de49693 9feb397 790450f 385b92d a6099b9 a5b451f 385b92d a6099b9 ea45b1a 9be92e3 a6099b9 1cf35a4 a6099b9 99868b2 a6099b9 99868b2 a6099b9 99868b2 a6099b9 99868b2 a6099b9 99868b2 a6099b9 99868b2 a6099b9 385b92d 790450f 385b92d a6099b9 7c98006 385b92d 790450f 385b92d 5392f0a edf339b 5392f0a 790450f 93a13eb 5392f0a 790450f 5392f0a 790450f 5392f0a a5b451f 5392f0a 1ee1019 790450f 5392f0a 385b92d 790450f 385b92d 790450f 385b92d 790450f 385b92d edf339b 385b92d 790450f 385b92d 790450f 93a13eb 790450f 385b92d 790450f 385b92d 790450f 385b92d 790450f a5b451f 385b92d 1ee1019 790450f 385b92d a5b451f a2391de 251bc20 220b3d4 7c98006 385b92d 7c98006 385b92d 790450f 385b92d 790450f 385b92d 790450f 385b92d edf339b 385b92d 790450f 385b92d 790450f 385b92d 1cf35a4 385b92d 1cf35a4 ce98fbe 8c1d564 1cf35a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
---
base_model:
- openai/whisper-large-v2
datasets:
- MERaLiON/MNSC
library_name: transformers
license: other
license_name: meralion-public-license
license_link: https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION/blob/main/MERaLiON-Public-Licence-v1.pdf
metrics:
- bleu
- wer
pipeline_tag: automatic-speech-recognition
tags:
- vllm
- LLM-as-a-Judge
- chat
- audio
- safetensors
widget:
- example_title: Sentence-level ASR
src: librispeech_clean.wav
output:
text: "USER Instruction: Please transcribe this speech.\n MODEL Output: <Speaker1>\
\ When they were outside, Ung simply latched the door and started up the path."
- example_title: Dialogue-level ASR
src: IMDA_conversation.wav
output:
text: "USER Instruction: Please turn this speech into written format.\n MODEL\
\ Output: <Speaker1> Okay, (um) in that case, (uh) how do I apply? <Speaker2>\
\ Alright, you can just (um) apply it online and then (um) we'll need some documents\
\ from you. (um) let's say the bank statement with your address and your name,\
\ and also the (um) Nsf card that you have to enjoy the promotion. <Speaker1>\
\ (mmhmm) (mmhmm) (mmhmm) [ah] I see the green one, right?"
- example_title: Spoken Dialogue Summarization
src: IMDA_conversation.wav
output:
text: "USER Instruction: Please briefly summarize this conversation.\n MODEL Output:\
\ Speaker1 and Speaker2 discussed the application process for a promotion. Speaker2\
\ explained that the application can be done online and provided a list of required\
\ documents, including a bank statement with the applicant's address and name,\
\ and an NSF card. Speaker1 acknowledged the information and confirmed the details\
\ of the required documents."
---
# MERaLiON
MERaLiON-AudioLLM is a Speech-Text Large Language Model tailored for Singapore’s multilingual and multicultural landscape. Integrating a localised [Whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) speech encoder and [SEA-LION V3](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct) text decoder, MERaLiON-AudioLLM is finetuned on **260,000 hours of speech and audio data**, **6 various tasks**, to address the diverse linguistic nuances of Singapore's local accents and dialects.
MERaLiON stands for **M**ultimodal **E**mpathetic **R**easoning **a**nd **L**earning **i**n **O**ne **N**etwork.
- **Developed by:** I<sup>2</sup>R, A\*STAR, with collaboration with AISG, Singapore
- **Model type:** Multimodal LLM
- **Language(s):** Primarily English (Global and Singapore), with support for input and output in other languages compatible with Whisper and SEA-LION models.
- **License:** [MERaLiON Public License](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION/blob/main/MERaLiON-Public-Licence-v1.pdf)
- **Demo:** [MERaLiON-AudioLLM Web Demo](https://huggingface.co/spaces/MERaLiON/MERaLiON-AudioLLM)
We support model inference using the [Huggingface](#inference) and [vLLM](vllm_plugin_meralion/README.md) frameworks. For more technical details, please refer to our [technical report](https://arxiv.org/abs/2412.09818).
## Acknowledgement
This research is supported by the National Research Foundation, Singapore and Infocomm Media Development Authority, Singapore under its National Large Language Models Funding Initiative.
## Model Description
MERaLiON-AudioLLM is designed to take in an **audio-text pair** as input and generate a **text output**.
The architecture comprises three key components: an **audio encoder** that transforms speech or audio inputs into sequences of vector representations, a **text decoder** that interprets and responds to natural language instructions, and an **adaptor module** that compresses the encoder representations while aligning the encoder’s hidden dimension with the text decoder’s embedding size.
Specifically, we fine-tuned the **MERaLiON-Whisper** encoder from Whisper-large-v2 for the audio encoder and used SEA-LION V3, a localised LLM developed by our partner AI Singapore as the text decoder.
<img src="model_architecture.png" alt="model_architecture" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
## Capabilities
MERaLiON-AudioLLM is trained to mainly address 6 tasks, namely `Automatic Speech Recognition` (ASR),
`Speech Translation` (ST), `Spoken Question Answering` (SQA),
`Spoken Dialogue Summarization` (SDS), `Speech Instruction` (SI), and `Paralinguistics` (PARA).
We benchmark MERaLiON-AudioLLM with a series of test sets from the [AudioBench benchmark](https://github.com/AudioLLMs/AudioBench)
against three well-known AudioLLMs: `Qwen2-Audio 7B`, `WavLLM`, `SALMONN`, and a cascaded model.
As is shown in the following table, MERaLiON-AudioLLM performs better in the Singapore local context,
as evidenced by evaluation results on Singapore's [Multitask National Speech Corpus](https://huggingface.co/datasets/MERaLiON/Multitask-National-Speech-Corpus-v1) (MNSC) datasets.
> [!NOTE]
> MNSC is a multitask speech understanding dataset derived and further annotated from [IMDA NSC Corpus](https://www.imda.gov.sg/how-we-can-help/national-speech-corpus).
> It focuses on the knowledge of Singapore's local accent, localised terms, and code-switching.
We assess ASR and ST tasks using Word Error Rate (WER) and BLEU scores, respectively. For other tasks, we employ the LLM-as-a-Judge framework,
which uses a pre-trained large language model to evaluate task performance by generating and scoring responses based on relevance, coherence, and accuracy criteria.
Refer to the [AudioBench paper](https://arxiv.org/abs/2406.16020) for more details.
<div class="table*">
<table>
<thead>
<tr>
<th style="text-align: center;"><strong>Task</strong></th>
<th style="text-align: center;"><strong>Dataset</strong></th>
<th style="text-align: center;"><strong>MERaLiON</strong></th>
<th style="text-align: center;"><strong>Qwen2-Audio 7B</strong></th>
<th style="text-align: center;"><strong>WavLLM</strong></th>
<th style="text-align: center;"><strong>SALMONN-7B</strong></th>
<th style="text-align: center;"><strong>Cascaded Model</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center;" rowspan="11"><strong>Automatic Speech Recognition</strong><br>WER (<span
class="math inline">↓</span>)</td>
<td style="text-align: center;">LibriSpeech-Test-Clean</td>
<td style="text-align: center;">0.03</td>
<td style="text-align: center;">0.03</td>
<td style="text-align: center;"><strong><u>0.02</u></strong></td>
<td style="text-align: center;">0.10</td>
<td style="text-align: center;">0.03</td>
</tr>
<tr>
<td style="text-align: center;">LibriSpeech-Test-Other</td>
<td style="text-align: center;"><strong><u>0.05</u></strong></td>
<td style="text-align: center;">0.06</td>
<td style="text-align: center;"><strong><u>0.05</u></strong></td>
<td style="text-align: center;">0.10</td>
<td style="text-align: center;"><u>0.05</u></td>
</tr>
<tr>
<td style="text-align: center;">Common-Voice-15-En-Test</td>
<td style="text-align: center;"><strong><u>0.10</u></strong></td>
<td style="text-align: center;">0.11</td>
<td style="text-align: center;">0.15</td>
<td style="text-align: center;">0.31</td>
<td style="text-align: center;">0.11</td>
</tr>
<tr>
<td style="text-align: center;">Earnings21-Test</td>
<td style="text-align: center;"><strong>0.17</strong></td>
<td style="text-align: center;">0.19</td>
<td style="text-align: center;">0.65</td>
<td style="text-align: center;">0.26</td>
<td style="text-align: center;"><u>0.11</u></td>
</tr>
<tr>
<td style="text-align: center;">Earnings22-Test</td>
<td style="text-align: center;"><strong>0.20</strong></td>
<td style="text-align: center;">0.24</td>
<td style="text-align: center;">0.67</td>
<td style="text-align: center;">0.36</td>
<td style="text-align: center;"><u>0.14</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 1</td>
<td style="text-align: center;"><u><strong>0.05</strong></u></td>
<td style="text-align: center;">0.07</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.09</td>
<td style="text-align: center;">0.07</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 2</td>
<td style="text-align: center;"><u><strong>0.05</strong></u></td>
<td style="text-align: center;">0.19</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.42</td>
<td style="text-align: center;">0.33</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 3</td>
<td style="text-align: center;"><u><strong>0.28</strong></u></td>
<td style="text-align: center;">0.35</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.66</td>
<td style="text-align: center;">0.30</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 4</td>
<td style="text-align: center;"><u><strong>0.40</strong></u></td>
<td style="text-align: center;">0.56</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.76</td>
<td style="text-align: center;">0.48</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 5</td>
<td style="text-align: center;"><u><strong>0.21</strong></u></td>
<td style="text-align: center;">0.28</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.35</td>
<td style="text-align: center;">0.23</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-ASR-Part 6</td>
<td style="text-align: center;"><u><strong>0.15</strong></u></td>
<td style="text-align: center;">0.22</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">0.25</td>
<td style="text-align: center;">0.18</td>
</tr>
<tr>
<td style="text-align: center;" rowspan="6"><strong>Speech Translation</strong><br>BLEU (<span
class="math inline">↑</span>)</td>
<td style="text-align: center;">CoVoST 2 En <span
class="math inline">→</span> Id</td>
<td style="text-align: center;"><strong><u>32.62</u></strong></td>
<td style="text-align: center;">16.33</td>
<td style="text-align: center;">13.84</td>
<td style="text-align: center;">14.14</td>
<td style="text-align: center;">27.62</td>
</tr>
<tr>
<td style="text-align: center;">CoVoST 2 En <span
class="math inline">→</span> Zh</td>
<td style="text-align: center;"><strong><u>37.98</u></strong></td>
<td style="text-align: center;">25.77</td>
<td style="text-align: center;">31.96</td>
<td style="text-align: center;">33.89</td>
<td style="text-align: center;">35.27</td>
</tr>
<tr>
<td style="text-align: center;">CoVoST 2 En <span
class="math inline">→</span> Ta</td>
<td style="text-align: center;"><strong><u>8.50</u></strong></td>
<td style="text-align: center;">0.03</td>
<td style="text-align: center;">0.00</td>
<td style="text-align: center;">0.00</td>
<td style="text-align: center;">8.46</td>
</tr>
<tr>
<td style="text-align: center;">CoVoST 2 Id <span
class="math inline">→</span> En</td>
<td style="text-align: center;"><strong>37.07</strong></td>
<td style="text-align: center;">6.33</td>
<td style="text-align: center;">5.93</td>
<td style="text-align: center;">26.89</td>
<td style="text-align: center;"><u>46.80</u></td>
</tr>
<tr>
<td style="text-align: center;">CoVoST 2 Zh <span
class="math inline">→</span> En</td>
<td style="text-align: center;">15.01</td>
<td style="text-align: center;"><strong><u>16.47</u></strong></td>
<td style="text-align: center;">2.37</td>
<td style="text-align: center;">5.30</td>
<td style="text-align: center;">15.21</td>
</tr>
<tr>
<td style="text-align: center;">CoVoST 2 Ta <span
class="math inline">→</span> En</td>
<td style="text-align: center;"><strong><u>3.97</u></strong></td>
<td style="text-align: center;">0.04</td>
<td style="text-align: center;">0.17</td>
<td style="text-align: center;">0.36</td>
<td style="text-align: center;">2.83</td>
</tr>
<tr>
<td style="text-align: center;" rowspan="8"><strong>Spoken Question Answering</strong><br>LLM-as-a-Judge (<span
class="math inline">↑</span>)</td>
<td style="text-align: center;">SLUE-SQA-5</td>
<td style="text-align: center;">82.94</td>
<td style="text-align: center;">80.05</td>
<td style="text-align: center;"><strong>83.92</strong></td>
<td style="text-align: center;">83.48</td>
<td style="text-align: center;"><u>88.58</u></td>
</tr>
<tr>
<td style="text-align: center;">Spoken-SQuAD</td>
<td style="text-align: center;">70.33</td>
<td style="text-align: center;">64.86</td>
<td style="text-align: center;"><strong>77.65</strong></td>
<td style="text-align: center;">66.40</td>
<td style="text-align: center;"><u>88.62</u></td>
</tr>
<tr>
<td style="text-align: center;">CN-College-Listen-Test</td>
<td style="text-align: center;"><strong>85.03</strong></td>
<td style="text-align: center;">74.51</td>
<td style="text-align: center;">65.43</td>
<td style="text-align: center;">50.90</td>
<td style="text-align: center;"><u>91.85</u></td>
</tr>
<tr>
<td style="text-align: center;">Singapore-Public-Speech-SQA</td>
<td style="text-align: center;"><strong>60.32</strong></td>
<td style="text-align: center;">58.31</td>
<td style="text-align: center;">58.55</td>
<td style="text-align: center;">59.24</td>
<td style="text-align: center;"><u>73.11</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SQA-Part 3</td>
<td style="text-align: center;"><strong>51.4</strong></td>
<td style="text-align: center;">42.0</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">40.60</td>
<td style="text-align: center;"><u>53.20</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SQA-Part 4</td>
<td style="text-align: center;"><strong>49.0</strong></td>
<td style="text-align: center;">39.6</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">36.60</td>
<td style="text-align: center;"><u>60.20</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SQA-Part 5</td>
<td style="text-align: center;"><strong>58.2</strong></td>
<td style="text-align: center;">51.6</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">44.60</td>
<td style="text-align: center;"><u>67.20</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SQA-Part 6</td>
<td style="text-align: center;"><strong>65.2</strong></td>
<td style="text-align: center;">53.6</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">46.80</td>
<td style="text-align: center;"><u>71.60</u></td>
</tr>
<tr>
<td style="text-align: center;" rowspan="4"><strong>Spoken Dialogue Summarization</strong><br>LLM-as-a-Judge (<span
class="math inline">↑</span>)</td>
<td style="text-align: center;">MNSC-SDS-Part 3</td>
<td style="text-align: center;"><u><strong>46.80</strong></u></td>
<td style="text-align: center;">33.80</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">9.0</td>
<td style="text-align: center;">45.40</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SDS-Part 4</td>
<td style="text-align: center;"><u><strong>45.80</strong></u></td>
<td style="text-align: center;">24.80</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">7.0</td>
<td style="text-align: center;">44.00</td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SDS-Part 5</td>
<td style="text-align: center;"><strong>55.2</strong></td>
<td style="text-align: center;">40.4</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">17.2</td>
<td style="text-align: center;"><u>58.00</u></td>
</tr>
<tr>
<td style="text-align: center;">MNSC-SDS-Part 6</td>
<td style="text-align: center;"><strong>61.8</strong></td>
<td style="text-align: center;">46.2</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">24.2</td>
<td style="text-align: center;"><u>65.40</u></td>
</tr>
<tr>
<td style="text-align: center;" rowspan="2"><strong>Speech Instruction</strong><br>LLM-as-a-Judge (<span
class="math inline">↑</span>)</td>
<td style="text-align: center;">OpenHermes-Audio</td>
<td style="text-align: center;"><strong>71.4</strong></td>
<td style="text-align: center;">44.8</td>
<td style="text-align: center;">22.40</td>
<td style="text-align: center;">15.80</td>
<td style="text-align: center;"><u>72.20</u></td>
</tr>
<tr>
<td style="text-align: center;">Alpaca-GPT4-Audio</td>
<td style="text-align: center;"><strong>73.4</strong></td>
<td style="text-align: center;">52.6</td>
<td style="text-align: center;">21.60</td>
<td style="text-align: center;">17.20</td>
<td style="text-align: center;"><u>73.80</u></td>
</tr>
<tr>
<td style="text-align: center;" rowspan="4"><strong>Paralinguistics</strong><br>LLM-as-a-Judge (<span
class="math inline">↑</span>)</td>
<td style="text-align: center;">VoxCeleb-Gender-Test</td>
<td style="text-align: center;"><strong><u>99.53</u></strong></td>
<td style="text-align: center;">99.12</td>
<td style="text-align: center;">69.68</td>
<td style="text-align: center;">88.81</td>
<td style="text-align: center;">35.25</td>
</tr>
<tr>
<td style="text-align: center;">VoxCeleb-Accent-Test</td>
<td style="text-align: center;"><strong><u>46.35</u></strong></td>
<td style="text-align: center;">29.18</td>
<td style="text-align: center;">-</td>
<td style="text-align: center;">34.22</td>
<td style="text-align: center;">24.64</td>
</tr>
<tr>
<td style="text-align: center;">MELD-Sentiment-Test</td>
<td style="text-align: center;">42.26</td>
<td style="text-align: center;"><strong>53.49</strong></td>
<td style="text-align: center;">50.08</td>
<td style="text-align: center;">42.07</td>
<td style="text-align: center;"><u>56.67</u></td>
</tr>
<tr>
<td style="text-align: center;">MELD-Emotion-Test</td>
<td style="text-align: center;">30.15</td>
<td style="text-align: center;">40.54</td>
<td style="text-align: center;"><strong>41.07</strong></td>
<td style="text-align: center;">30.73</td>
<td style="text-align: center;"><u>47.39</u></td>
</tr>
</tbody>
</table>
</div>
## Uses
Here we provide a code snippet illustrating the process of loading both the processor and model, alongside detailed instructions on executing the MERaLiON-AudioLLM model for content generation.
> [!WARNING]
> **Out of Scope use**: This model is not intended for use in tool calling, math, and coding tasks.
### Inference
```python
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
repo_id = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"
processor = AutoProcessor.from_pretrained(
repo_id,
trust_remote_code=True,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
repo_id,
use_safetensors=True,
trust_remote_code=True,
)
prompt = "Given the following audio context: <SpeechHere>\n\nText instruction: {query}"
query = "Please transcribe this speech."
conversation = [
{"role": "user", "content": prompt.format(query=query)}
]
chat_prompt = processor.tokenizer.apply_chat_template(
conversation=conversation,
tokenize=False,
add_generation_prompt=True
)
libri_data = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
audio_array = libri_data[0]["audio"]["array"]
inputs = processor(text=chat_prompt, audios=audio_array)
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.1, top_p=0.9, repetition_penalty=1.1)
generated_ids = outputs[:, inputs['input_ids'].size(1):]
response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Batch Inference
MERaLiON-AudioLLM also supports batch inference.
```python
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
repo_id = "MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION"
processor = AutoProcessor.from_pretrained(
repo_id,
trust_remote_code=True,
)
model = AutoModelForSpeechSeq2Seq.from_pretrained(
repo_id,
use_safetensors=True,
trust_remote_code=True,
)
prompt = "Given the following audio context: <SpeechHere>\n\nText instruction: {query}"
transcribe_query = "Please transcribe this speech."
translate_query = "Can you please translate this speech into written Chinese?"
conversation = [
[{"role": "user", "content": prompt.format(query=transcribe_query)}],
[{"role": "user", "content": prompt.format(query=translate_query)}],
]
chat_prompt = processor.tokenizer.apply_chat_template(
conversation=conversation,
tokenize=False,
add_generation_prompt=True
)
libri_data = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
audio_array = [libri_data[0]["audio"]["array"]]*2
inputs = processor(text=chat_prompt, audios=audio_array)
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.1, top_p=0.9, repetition_penalty=1.1)
generated_ids = outputs[:, inputs['input_ids'].size(1):]
response = processor.batch_decode(generated_ids, skip_special_tokens=True)
```
### vLLM Inference
We support hosting the model using vLLM framework. Refer to the guide [here](vllm_plugin_meralion/README.md).
## Disclaimer
The current MERaLiON-AudioLLM has not been specifically aligned for safety and may generate content that is inappropriate, offensive, or harmful. Developers and users are responsible for performing their own safety fine-tuning and implementing necessary security measures. The authors shall not be held liable for any claims, damages, or other liabilities arising from the use of the released models, weights, or code.
## Technical Specifications
### Training Data
MERaLiON-AudioLLM is trained on a diverse collection of publicly available datasets, alongside synthesised and augmented samples carefully curated by the team and native speakers, totaling 260,000 hours of audio.
### Compute and Infrastructure
MERaLiON-AudioLLM is trained on the **ASPIRE 2A+** Supercomputer Cluster, provided by **National Supercomputing Centre (NSCC)**, Singapore. ASPIRE 2A+ cluster provides multiple H100 nodes, with each compute node equipped with 8 Nvidia H100 GPUs, 2 TB of RAM, and 30 TB of locally attached NVMe storage. These nodes are interconnected via a rail-optimised, full fat-tree topology, utilising 400 Gb/s NDR InfiniBand cables. Additionally, the cluster incorporates a 2.5 PB SSD-based Lustre file system, linked to the H100 nodes through high-speed InfiniBand connections.
With a global batch size of 640, we train the current release of MERaLiON-AudioLLM for around 200k steps, which took 2 days to complete using 16 nodes, 128 H100 GPUs.
## Citation
If you find our work useful, please cite our paper:
```
@misc{he2024meralionaudiollmtechnicalreport,
title={MERaLiON-AudioLLM: Bridging Audio and Language with Large Language Models},
author={{MERaLiON Team}},
year={2024},
eprint={2412.09818},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.09818},
}
``` |