--- language: - ko - en pipeline_tag: text-generation datasets: - nlpai-lab/kullm-v2 - MarkrAI/KoCommercial-Dataset --- ### Model Card for Model ID base_model : [google/gemma-7b](https://huggingface.co/google/gemma-7b) ### Basic usage ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("MDDDDR/gemma-7b-it-v0.2") model = AutoModelForCausalLM.from_pretrained( "MDDDDR/gemma-7b-it-v0.2", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "사과가 뭐야?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Training dataset - dataset_1 : [MarkrAI/KoCommercial-Dataset](https://huggingface.co/datasets/MarkrAI/KoCommercial-Dataset) - dataset_2 : [nlpai-lab/kullm-v2](https://huggingface.co/datasets/nlpai-lab/kullm-v2) ### lora_config and bnb_config in Training ```python bnd_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant = True, bnb_4bit_quant_type = 'nf4', bnb_4bit_compute_dtype = torch.bfloat16 ) lora_config = LoraConfig( r = 8, lora_alpha = 8, lora_dropout = 0.05, target_modules = ['gate_proj', 'up_proj', 'down_proj'] ) ``` ### Model Evaluation | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-----------------|-------|------|-----:|-----------|---|-----:|---|------| |kobest_boolq | 1|none | 0|acc |↑ |0.5912|± |0.0131| | | |none | 0|f1 |↑ |0.5183|± |N/A | |kobest_copa | 1|none | 0|acc |↑ |0.6320|± |0.0153| | | |none | 0|f1 |↑ |0.6313|± |N/A | |kobest_hellaswag | 1|none | 0|acc |↑ |0.4220|± |0.0221| | | |none | 0|acc_norm |↑ |0.5280|± |0.0223| | | |none | 0|f1 |↑ |0.4190|± |N/A | |kobest_sentineg | 1|none | 0|acc |↑ |0.4962|± |0.0251| | | |none | 0|f1 |↑ |0.3747|± |N/A | ### Hardware - RTX 3090 Ti 24GB x 1 - Training Time : 80 hours