File size: 1,233 Bytes
d180553 a872fd6 98c4bae a872fd6 354d34b a872fd6 f146f26 a872fd6 f146f26 98c4bae f146f26 d180553 a872fd6 354d34b a872fd6 d1b8409 a872fd6 d1b8409 a872fd6 354d34b a872fd6 d1b8409 a872fd6 d1b8409 a872fd6 354d34b f146f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
tags:
- yolov5
- yolo
- vision
- object-detection
- biology
- climate
library_name: yolov5
library_version: 7.0.7
inference: false
model-index:
- name: mbari-org/megamidwater
results:
- task:
type: object-detection
metrics:
- type: precision
value: 0.73555
name: [email protected]
license: apache-2.0
language:
- en
pipeline_tag: object-detection
---
### How to use
- Install [yolov5](https://github.com/fcakyon/yolov5-pip):
```bash
pip install -U yolov5
```
- Load model and perform prediction:
```python
import yolov5
model = yolov5.load('MBARI-org/megamidwater')
# Run the yolo
# set model parameters
model.conf = 0.25 # NMS confidence threshold
model.iou = 0.1 # NMS IoU threshold
model.agnostic = False # NMS class-agnostic
model.multi_label = False # NMS multiple labels per box
model.max_det = 1000 # maximum number of detections per image
# set image
img = 'http://dsg.mbari.org/images/dsg/external/Ctenophora/Deiopea_01.png'
# perform inference
results = model(img, size=1280)
# print results
print(results.pandas().xyxy[0])
```
- Finetune the model on your custom dataset:
```bash
yolov5 train --data data.yaml --img 1280 --batch 16 --weights mbari-org/megamidwater --epochs 10
``` |