--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: tweet_sentiment_analysis_clean_tweet results: [] --- # tweet_sentiment_analysis_clean_tweet This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4886 - Accuracy: 0.8081 - F1: 0.8073 - Recall: 0.8037 - Precision: 0.8110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.4077 | 1.0 | 20000 | 0.4019 | 0.8153 | 0.8177 | 0.8281 | 0.8076 | | 0.3382 | 2.0 | 40000 | 0.4175 | 0.8148 | 0.8133 | 0.8063 | 0.8204 | | 0.2948 | 3.0 | 60000 | 0.4528 | 0.8107 | 0.8129 | 0.8220 | 0.8041 | | 0.2541 | 4.0 | 80000 | 0.4886 | 0.8081 | 0.8073 | 0.8037 | 0.8110 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0