Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2487.65 +/- 37.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c0ea8092069374b007a7a85e6fea18fa24e407181ed9c97514f867b6230e7fa
|
3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f028869d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f02886a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f02886af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f02886b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9f02886c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9f02886ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f02886d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f02886dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9f02886e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f02886ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f02886f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f0288b040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9f02887ac0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678710198557291601,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJIoVL5gjS6/iK3AvoUK3T6hiZm/LhdAwKpJCz9pXRw/Lcgwv7kCEcCJ2fC+taT3vmJUWL4A3zHAbnUGv9acoj8+AUw+rxXAPy99HT9p+Fm/KlsnP9aBDj9Ymce+fbEEQFFBtr/HG5E+ME+2vyHCMb9EAlQ/ReQOvzndL77Pwoo/K/pyv2Dstb9pql4987ZhvfuqTD+2hsG/G1qgOyx/JD91GFY++qGmv0NS8L5wo7a/jRk+v++HYT9X7vU+ksyjPzu6YT7t8mq/jLdQv/31GD9RQba/xxuRPjBPtr8hwjG/ZhbQvrpwW79nDTq/ymAVPvIRjL8IWYQ/3yvDPpMPub2SQoe/fpnmPinxFD8BRGk+Lwswv10xN7+UraM+/fxCvJMbkD93UV2/BxDvvA6Lgr8DmpU/Q3a7O3R00D6nHMe9usozP8cbkT4MvTM/FVe4P7JGmj+HwBy/b/eDvjfpqz/enYW/bJM7v0PXEz5iYtq9Z46mPyPCCb8IC0M+Qrbqv+TCQD/3jSa/kvh8v06bub+KeHe/Ot1HP+a1ob0CiAhAXH5/Pnnqrb5ixIa/zW1Vv1FBtr/HG5E+ME+2vyHCMb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACusla1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALcRPPAAAAACbPuy/AAAAAC0iA74AAAAA77PrPwAAAADVaqc9AAAAAK04AEAAAAAAZAK8vAAAAACkqe+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYo/ZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH9c+L0AAAAArzPgvwAAAAClkgO+AAAAALGk7D8AAAAA1AANvgAAAABKbOk/AAAAABo3k70AAAAAJdvuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALc/3zUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBkDU29AAAAAMSC+r8AAAAAZ9eWPQAAAAAui+g/AAAAAIsogj0AAAAACtrvPwAAAAAHUOc9AAAAAKrw+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNSsC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc66evQAAAABtJ+y/AAAAAKe+9L0AAAAAsQPlPwAAAABOo6K9AAAAACOf3z8AAAAAzCX9PQAAAAC4XPm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKGsAifxtpGMAWyUTegDjAF0lEdAqcdaosI3SHV9lChoBkdAoD/3G+9Jz2gHTegDaAhHQKnJa5dWyTp1fZQoaAZHQJlEA9C/oJRoB03oA2gIR0Cpy/KZ+hGpdX2UKGgGR0ChK/0DMeOoaAdN6ANoCEdAqc1PF3pwCXV9lChoBkdAoHi/uJDVpmgHTegDaAhHQKnTP0Qsf7t1fZQoaAZHQJuu5OSGJvZoB03oA2gIR0Cp1cyq2jO+dX2UKGgGR0CdhVL/CIk7aAdN6ANoCEdAqdmVinYQKHV9lChoBkdAlxW4lUp/gGgHTegDaAhHQKnb0BXjlxR1fZQoaAZHQJNUy46Oo5xoB03oA2gIR0Cp4h68pTdddX2UKGgGR0CVz45e7cwhaAdN6ANoCEdAqeQgkgOjI3V9lChoBkdAl41BrWRRuWgHTegDaAhHQKnmovcJtzl1fZQoaAZHQJYn4hRqGlBoB03oA2gIR0Cp6Akiliz+dX2UKGgGR0CHW6z0HyEtaAdN6ANoCEdAqe3mB4D9wXV9lChoBkdAl7oPjKgZj2gHTegDaAhHQKnv6by6MBJ1fZQoaAZHQJrRNyq+8GtoB03oA2gIR0Cp8wa8g6ltdX2UKGgGR0CZPh1BdD6WaAdN6ANoCEdAqfUfr0J4S3V9lChoBkdAmaa1j/dZaGgHTegDaAhHQKn8iGY8dPt1fZQoaAZHQJeHThR64UhoB03oA2gIR0Cp/oapgkTpdX2UKGgGR0CbUnnWrfcfaAdN6ANoCEdAqgDxMrVe8nV9lChoBkdAnYLflEJBxGgHTegDaAhHQKoCSMc6vJR1fZQoaAZHQKCc8Be5WiloB03oA2gIR0CqCB8pb2UTdX2UKGgGR0CgK3eQuEmIaAdN6ANoCEdAqgokdxQzlHV9lChoBkdAoMZu7L+xW2gHTegDaAhHQKoMosjFAFB1fZQoaAZHQJyWOWt2cKBoB03oA2gIR0CqDjKDCgscdX2UKGgGR0CeSs9wFTvRaAdN6ANoCEdAqhb8fms/6nV9lChoBkdAn8xjh99c8mgHTegDaAhHQKoZCajN6gN1fZQoaAZHQJ1G0Ja7mMhoB03oA2gIR0CqG4NGNJe3dX2UKGgGR0CcCHwosqaxaAdN6ANoCEdAqhzfrUsnRnV9lChoBkdAmq/hyfcvd2gHTegDaAhHQKoi0Q176YV1fZQoaAZHQJtTfFyaNMpoB03oA2gIR0CqJOTNUwSKdX2UKGgGR0CgDe0JfICEaAdN6ANoCEdAqidpMlC1JHV9lChoBkdAneqFBlcyFmgHTegDaAhHQKoozCj1wo91fZQoaAZHQJ9hFNATqSpoB03oA2gIR0CqMLrFfiPydX2UKGgGR0CfMMcIqsltaAdN6ANoCEdAqjOvwb2lEnV9lChoBkdAnoDQG8mKImgHTegDaAhHQKo2Iz7/GVB1fZQoaAZHQJ8xIhpxm05oB03oA2gIR0CqN36VUuL8dX2UKGgGR0Cd/tC0WuYAaAdN6ANoCEdAqj1vovBacXV9lChoBkdAoB91b/wRXmgHTegDaAhHQKo/fi2lVLl1fZQoaAZHQJ66+Bg/keZoB03oA2gIR0CqQf4W+GoKdX2UKGgGR0Cc5EOrhisoaAdN6ANoCEdAqkNcdFOO83V9lChoBkdAn2WL6tT1kGgHTegDaAhHQKpKLtw71Zl1fZQoaAZHQJ7wD5ylvZRoB03oA2gIR0CqTXsXSBsidX2UKGgGR0Ce65rdnCfpaAdN6ANoCEdAqlDxjriVB3V9lChoBkdAn5OrwBo242gHTegDaAhHQKpSac+aBqd1fZQoaAZHQJ++Rp8F6iVoB03oA2gIR0CqWFMkhRqHdX2UKGgGR0CgvUDGDL8raAdN6ANoCEdAqlpPMfRu0nV9lChoBkdAoGzoODrZ8WgHTegDaAhHQKpczim2sq91fZQoaAZHQJ1Ov5AQg9xoB03oA2gIR0CqXi3I2fkFdX2UKGgGR0Cdsathd+ocaAdN6ANoCEdAqmP508vEj3V9lChoBkdAoBl6XF98Z2gHTegDaAhHQKpmzf6XSjR1fZQoaAZHQJpTvk2gnMNoB03oA2gIR0CqarbpNbkfdX2UKGgGR0Cgib9qUNayaAdN6ANoCEdAqmzjbi6xxHV9lChoBkdAnkWC4jKPn2gHTegDaAhHQKpy6HfuTid1fZQoaAZHQJp9KPwNLDhoB03oA2gIR0CqdOheHBUJdX2UKGgGR0CdwVyDZlFuaAdN6ANoCEdAqndkTJyQxXV9lChoBkdAoDrB6nivPmgHTegDaAhHQKp4wF+NLlF1fZQoaAZHQKAKD1lGwzNoB03oA2gIR0CqfrSwW3z+dX2UKGgGR0CfhqFwDNhWaAdN6ANoCEdAqoCr0z0pVnV9lChoBkdAn/oNNrTH82gHTegDaAhHQKqEC+L3sX11fZQoaAZHQKEGSMXrMTxoB03oA2gIR0CqhjVGTcIrdX2UKGgGR0CgVfqdhAnlaAdN6ANoCEdAqo2N0aIeo3V9lChoBkdAoLFgznA6+2gHTegDaAhHQKqPieU6gdx1fZQoaAZHQKEVpM1TBIpoB03oA2gIR0CqkhWQwK0EdX2UKGgGR0ChCQUVrRBvaAdN6ANoCEdAqpNwkC3gDXV9lChoBkdAoZJaC+UQkGgHTegDaAhHQKqZTavicXp1fZQoaAZHQKHDjBuXNTtoB03oA2gIR0Cqm2d6kZaWdX2UKGgGR0ChDjHaWX1KaAdN6ANoCEdAqp3eAXl8xHV9lChoBkdAn8Ozst03fmgHTegDaAhHQKqftl2/zrh1fZQoaAZHQJ1P7SXt0FNoB03oA2gIR0CqqD7ayrxRdX2UKGgGR0CbeMlOoHcDaAdN6ANoCEdAqqpAna37UHV9lChoBkdAmAjih37k4mgHTegDaAhHQKqsu4wRGtp1fZQoaAZHQJpcYKKHfuVoB03oA2gIR0Cqrh7lijL0dX2UKGgGR0CamuPAwfyPaAdN6ANoCEdAqrQkdLg4wXV9lChoBkdAnLKkUbkwOGgHTegDaAhHQKq2Nb0voNd1fZQoaAZHQJptKlSCOFRoB03oA2gIR0CquLI2wV0tdX2UKGgGR0CcbsbobGWEaAdN6ANoCEdAqrodpqREGHV9lChoBkdAn5FzAzpHJGgHTegDaAhHQKrCkIw/PgN1fZQoaAZHQKFP4Z62OQ1oB03oA2gIR0CqxTGY0EX+dX2UKGgGR0Chx0kPDpC8aAdN6ANoCEdAqsfDm8ujAXV9lChoBkdAodlIpazNU2gHTegDaAhHQKrJKNUfgaZ1fZQoaAZHQKEbNUyYXwdoB03oA2gIR0CqzwQmeDnOdX2UKGgGR0ChfJRr8BMjaAdN6ANoCEdAqtEMF0PpZHV9lChoBkdAoNxi9AX2umgHTegDaAhHQKrTj1Ng0CR1fZQoaAZHQJ5mFE9dNWVoB03oA2gIR0Cq1Pww9JSSdX2UKGgGR0CdEKSA6MisaAdN6ANoCEdAqtw/CGetjnV9lChoBkdAnfxAeA/cFmgHTegDaAhHQKrfWOd5IH11fZQoaAZHQJ1SVo24usdoB03oA2gIR0Cq4j43vQWvdX2UKGgGR0Cd+cvfCQ9zaAdN6ANoCEdAquOccQyylnV9lChoBkdAoGi0K5TZQGgHTegDaAhHQKrpc1w5vLp1fZQoaAZHQKBXOAZsKsxoB03oA2gIR0Cq62yZrpJPdX2UKGgGR0Cg3ExVQyh0aAdN6ANoCEdAqu3egpSaVnV9lChoBkdAoHBvARChOGgHTegDaAhHQKrvTAdGRV91fZQoaAZHQJ/2TnPmgapoB03oA2gIR0Cq9X/dAPd3dX2UKGgGR0Cf3/NHH3lCaAdN6ANoCEdAqvh5g/keZHV9lChoBkdAoYLed5IH1WgHTegDaAhHQKr8VKzzErJ1fZQoaAZHQJ+rT07KaG5oB03oA2gIR0Cq/iPtlZoxdX2UKGgGR0Chh+GKQ7tBaAdN6ANoCEdAqwQAvBacJHV9lChoBkdAn2BpFgDzRWgHTegDaAhHQKsGEouPFNt1fZQoaAZHQKJJWN2C/XZoB03oA2gIR0CrCJxKYiPidX2UKGgGR0Cht344p+c6aAdN6ANoCEdAqwoBc1O0s3VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d049e74f1d1aeefc8fb8f624290231dcb0224573bbfac4b5de8b8add4185a6b7
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47175313860aace1072e7b0ae1c603a16ceb80c4d1caae89aaca4d5564e4863c
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f028869d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f02886a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f02886af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f02886b80>", "_build": "<function ActorCriticPolicy._build at 0x7f9f02886c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f02886ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f02886d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f02886dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f02886e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f02886ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f02886f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f0288b040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f02887ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678710198557291601, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJIoVL5gjS6/iK3AvoUK3T6hiZm/LhdAwKpJCz9pXRw/Lcgwv7kCEcCJ2fC+taT3vmJUWL4A3zHAbnUGv9acoj8+AUw+rxXAPy99HT9p+Fm/KlsnP9aBDj9Ymce+fbEEQFFBtr/HG5E+ME+2vyHCMb9EAlQ/ReQOvzndL77Pwoo/K/pyv2Dstb9pql4987ZhvfuqTD+2hsG/G1qgOyx/JD91GFY++qGmv0NS8L5wo7a/jRk+v++HYT9X7vU+ksyjPzu6YT7t8mq/jLdQv/31GD9RQba/xxuRPjBPtr8hwjG/ZhbQvrpwW79nDTq/ymAVPvIRjL8IWYQ/3yvDPpMPub2SQoe/fpnmPinxFD8BRGk+Lwswv10xN7+UraM+/fxCvJMbkD93UV2/BxDvvA6Lgr8DmpU/Q3a7O3R00D6nHMe9usozP8cbkT4MvTM/FVe4P7JGmj+HwBy/b/eDvjfpqz/enYW/bJM7v0PXEz5iYtq9Z46mPyPCCb8IC0M+Qrbqv+TCQD/3jSa/kvh8v06bub+KeHe/Ot1HP+a1ob0CiAhAXH5/Pnnqrb5ixIa/zW1Vv1FBtr/HG5E+ME+2vyHCMb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACusla1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALcRPPAAAAACbPuy/AAAAAC0iA74AAAAA77PrPwAAAADVaqc9AAAAAK04AEAAAAAAZAK8vAAAAACkqe+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYo/ZtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgH9c+L0AAAAArzPgvwAAAAClkgO+AAAAALGk7D8AAAAA1AANvgAAAABKbOk/AAAAABo3k70AAAAAJdvuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALc/3zUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBkDU29AAAAAMSC+r8AAAAAZ9eWPQAAAAAui+g/AAAAAIsogj0AAAAACtrvPwAAAAAHUOc9AAAAAKrw+b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNSsC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc66evQAAAABtJ+y/AAAAAKe+9L0AAAAAsQPlPwAAAABOo6K9AAAAACOf3z8AAAAAzCX9PQAAAAC4XPm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKGsAifxtpGMAWyUTegDjAF0lEdAqcdaosI3SHV9lChoBkdAoD/3G+9Jz2gHTegDaAhHQKnJa5dWyTp1fZQoaAZHQJlEA9C/oJRoB03oA2gIR0Cpy/KZ+hGpdX2UKGgGR0ChK/0DMeOoaAdN6ANoCEdAqc1PF3pwCXV9lChoBkdAoHi/uJDVpmgHTegDaAhHQKnTP0Qsf7t1fZQoaAZHQJuu5OSGJvZoB03oA2gIR0Cp1cyq2jO+dX2UKGgGR0CdhVL/CIk7aAdN6ANoCEdAqdmVinYQKHV9lChoBkdAlxW4lUp/gGgHTegDaAhHQKnb0BXjlxR1fZQoaAZHQJNUy46Oo5xoB03oA2gIR0Cp4h68pTdddX2UKGgGR0CVz45e7cwhaAdN6ANoCEdAqeQgkgOjI3V9lChoBkdAl41BrWRRuWgHTegDaAhHQKnmovcJtzl1fZQoaAZHQJYn4hRqGlBoB03oA2gIR0Cp6Akiliz+dX2UKGgGR0CHW6z0HyEtaAdN6ANoCEdAqe3mB4D9wXV9lChoBkdAl7oPjKgZj2gHTegDaAhHQKnv6by6MBJ1fZQoaAZHQJrRNyq+8GtoB03oA2gIR0Cp8wa8g6ltdX2UKGgGR0CZPh1BdD6WaAdN6ANoCEdAqfUfr0J4S3V9lChoBkdAmaa1j/dZaGgHTegDaAhHQKn8iGY8dPt1fZQoaAZHQJeHThR64UhoB03oA2gIR0Cp/oapgkTpdX2UKGgGR0CbUnnWrfcfaAdN6ANoCEdAqgDxMrVe8nV9lChoBkdAnYLflEJBxGgHTegDaAhHQKoCSMc6vJR1fZQoaAZHQKCc8Be5WiloB03oA2gIR0CqCB8pb2UTdX2UKGgGR0CgK3eQuEmIaAdN6ANoCEdAqgokdxQzlHV9lChoBkdAoMZu7L+xW2gHTegDaAhHQKoMosjFAFB1fZQoaAZHQJyWOWt2cKBoB03oA2gIR0CqDjKDCgscdX2UKGgGR0CeSs9wFTvRaAdN6ANoCEdAqhb8fms/6nV9lChoBkdAn8xjh99c8mgHTegDaAhHQKoZCajN6gN1fZQoaAZHQJ1G0Ja7mMhoB03oA2gIR0CqG4NGNJe3dX2UKGgGR0CcCHwosqaxaAdN6ANoCEdAqhzfrUsnRnV9lChoBkdAmq/hyfcvd2gHTegDaAhHQKoi0Q176YV1fZQoaAZHQJtTfFyaNMpoB03oA2gIR0CqJOTNUwSKdX2UKGgGR0CgDe0JfICEaAdN6ANoCEdAqidpMlC1JHV9lChoBkdAneqFBlcyFmgHTegDaAhHQKoozCj1wo91fZQoaAZHQJ9hFNATqSpoB03oA2gIR0CqMLrFfiPydX2UKGgGR0CfMMcIqsltaAdN6ANoCEdAqjOvwb2lEnV9lChoBkdAnoDQG8mKImgHTegDaAhHQKo2Iz7/GVB1fZQoaAZHQJ8xIhpxm05oB03oA2gIR0CqN36VUuL8dX2UKGgGR0Cd/tC0WuYAaAdN6ANoCEdAqj1vovBacXV9lChoBkdAoB91b/wRXmgHTegDaAhHQKo/fi2lVLl1fZQoaAZHQJ66+Bg/keZoB03oA2gIR0CqQf4W+GoKdX2UKGgGR0Cc5EOrhisoaAdN6ANoCEdAqkNcdFOO83V9lChoBkdAn2WL6tT1kGgHTegDaAhHQKpKLtw71Zl1fZQoaAZHQJ7wD5ylvZRoB03oA2gIR0CqTXsXSBsidX2UKGgGR0Ce65rdnCfpaAdN6ANoCEdAqlDxjriVB3V9lChoBkdAn5OrwBo242gHTegDaAhHQKpSac+aBqd1fZQoaAZHQJ++Rp8F6iVoB03oA2gIR0CqWFMkhRqHdX2UKGgGR0CgvUDGDL8raAdN6ANoCEdAqlpPMfRu0nV9lChoBkdAoGzoODrZ8WgHTegDaAhHQKpczim2sq91fZQoaAZHQJ1Ov5AQg9xoB03oA2gIR0CqXi3I2fkFdX2UKGgGR0Cdsathd+ocaAdN6ANoCEdAqmP508vEj3V9lChoBkdAoBl6XF98Z2gHTegDaAhHQKpmzf6XSjR1fZQoaAZHQJpTvk2gnMNoB03oA2gIR0CqarbpNbkfdX2UKGgGR0Cgib9qUNayaAdN6ANoCEdAqmzjbi6xxHV9lChoBkdAnkWC4jKPn2gHTegDaAhHQKpy6HfuTid1fZQoaAZHQJp9KPwNLDhoB03oA2gIR0CqdOheHBUJdX2UKGgGR0CdwVyDZlFuaAdN6ANoCEdAqndkTJyQxXV9lChoBkdAoDrB6nivPmgHTegDaAhHQKp4wF+NLlF1fZQoaAZHQKAKD1lGwzNoB03oA2gIR0CqfrSwW3z+dX2UKGgGR0CfhqFwDNhWaAdN6ANoCEdAqoCr0z0pVnV9lChoBkdAn/oNNrTH82gHTegDaAhHQKqEC+L3sX11fZQoaAZHQKEGSMXrMTxoB03oA2gIR0CqhjVGTcIrdX2UKGgGR0CgVfqdhAnlaAdN6ANoCEdAqo2N0aIeo3V9lChoBkdAoLFgznA6+2gHTegDaAhHQKqPieU6gdx1fZQoaAZHQKEVpM1TBIpoB03oA2gIR0CqkhWQwK0EdX2UKGgGR0ChCQUVrRBvaAdN6ANoCEdAqpNwkC3gDXV9lChoBkdAoZJaC+UQkGgHTegDaAhHQKqZTavicXp1fZQoaAZHQKHDjBuXNTtoB03oA2gIR0Cqm2d6kZaWdX2UKGgGR0ChDjHaWX1KaAdN6ANoCEdAqp3eAXl8xHV9lChoBkdAn8Ozst03fmgHTegDaAhHQKqftl2/zrh1fZQoaAZHQJ1P7SXt0FNoB03oA2gIR0CqqD7ayrxRdX2UKGgGR0CbeMlOoHcDaAdN6ANoCEdAqqpAna37UHV9lChoBkdAmAjih37k4mgHTegDaAhHQKqsu4wRGtp1fZQoaAZHQJpcYKKHfuVoB03oA2gIR0Cqrh7lijL0dX2UKGgGR0CamuPAwfyPaAdN6ANoCEdAqrQkdLg4wXV9lChoBkdAnLKkUbkwOGgHTegDaAhHQKq2Nb0voNd1fZQoaAZHQJptKlSCOFRoB03oA2gIR0CquLI2wV0tdX2UKGgGR0CcbsbobGWEaAdN6ANoCEdAqrodpqREGHV9lChoBkdAn5FzAzpHJGgHTegDaAhHQKrCkIw/PgN1fZQoaAZHQKFP4Z62OQ1oB03oA2gIR0CqxTGY0EX+dX2UKGgGR0Chx0kPDpC8aAdN6ANoCEdAqsfDm8ujAXV9lChoBkdAodlIpazNU2gHTegDaAhHQKrJKNUfgaZ1fZQoaAZHQKEbNUyYXwdoB03oA2gIR0CqzwQmeDnOdX2UKGgGR0ChfJRr8BMjaAdN6ANoCEdAqtEMF0PpZHV9lChoBkdAoNxi9AX2umgHTegDaAhHQKrTj1Ng0CR1fZQoaAZHQJ5mFE9dNWVoB03oA2gIR0Cq1Pww9JSSdX2UKGgGR0CdEKSA6MisaAdN6ANoCEdAqtw/CGetjnV9lChoBkdAnfxAeA/cFmgHTegDaAhHQKrfWOd5IH11fZQoaAZHQJ1SVo24usdoB03oA2gIR0Cq4j43vQWvdX2UKGgGR0Cd+cvfCQ9zaAdN6ANoCEdAquOccQyylnV9lChoBkdAoGi0K5TZQGgHTegDaAhHQKrpc1w5vLp1fZQoaAZHQKBXOAZsKsxoB03oA2gIR0Cq62yZrpJPdX2UKGgGR0Cg3ExVQyh0aAdN6ANoCEdAqu3egpSaVnV9lChoBkdAoHBvARChOGgHTegDaAhHQKrvTAdGRV91fZQoaAZHQJ/2TnPmgapoB03oA2gIR0Cq9X/dAPd3dX2UKGgGR0Cf3/NHH3lCaAdN6ANoCEdAqvh5g/keZHV9lChoBkdAoYLed5IH1WgHTegDaAhHQKr8VKzzErJ1fZQoaAZHQJ+rT07KaG5oB03oA2gIR0Cq/iPtlZoxdX2UKGgGR0Chh+GKQ7tBaAdN6ANoCEdAqwQAvBacJHV9lChoBkdAn2BpFgDzRWgHTegDaAhHQKsGEouPFNt1fZQoaAZHQKJJWN2C/XZoB03oA2gIR0CrCJxKYiPidX2UKGgGR0Cht344p+c6aAdN6ANoCEdAqwoBc1O0s3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad831cafdf5a72bfb02dce8ed6eb2c6a32bf8e0256d21acd9cc4e46dbfcead9e
|
3 |
+
size 1339799
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2487.6490907070693, "std_reward": 37.3100084393039, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T13:51:03.358010"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6edfa01065e947391bb41cf5a50d2ae329d3bac8827f4a5d2776c7b737d10d63
|
3 |
+
size 2521
|