Luciano commited on
Commit
dac0b13
·
1 Parent(s): b8606ad

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pt
4
+ license: mit
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - lener_br
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ - accuracy
14
+ model-index:
15
+ - name: bert-base-multilingual-cased-finetuned-lener_br-finetuned-lener-br
16
+ results:
17
+ - task:
18
+ name: Token Classification
19
+ type: token-classification
20
+ dataset:
21
+ name: lener_br
22
+ type: lener_br
23
+ config: lener_br
24
+ split: train
25
+ args: lener_br
26
+ metrics:
27
+ - name: Precision
28
+ type: precision
29
+ value: 0.9122490993309316
30
+ - name: Recall
31
+ type: recall
32
+ value: 0.9162574308606876
33
+ - name: F1
34
+ type: f1
35
+ value: 0.9142488716956804
36
+ - name: Accuracy
37
+ type: accuracy
38
+ value: 0.982592974434832
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # bert-base-multilingual-cased-finetuned-lener_br-finetuned-lener-br
45
+
46
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the lener_br dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: nan (To update)
49
+ - Precision: 0.9122 (To update)
50
+ - Recall: 0.9163 (To update)
51
+ - F1: 0.9142 (To update)
52
+ - Accuracy: 0.9826 (To update)
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters (To update)
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 2e-05
72
+ - train_batch_size: 2
73
+ - eval_batch_size: 2
74
+ - seed: 42
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - num_epochs: 15
78
+ - mixed_precision_training: Native AMP
79
+
80
+ ### Training results (To update)
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 0.068 | 1.0 | 3914 | nan | 0.6196 | 0.8604 | 0.7204 | 0.9568 |
85
+ | 0.0767 | 2.0 | 7828 | nan | 0.8270 | 0.8710 | 0.8484 | 0.9693 |
86
+ | 0.0257 | 3.0 | 11742 | nan | 0.7243 | 0.9005 | 0.8029 | 0.9639 |
87
+ | 0.0193 | 4.0 | 15656 | nan | 0.9010 | 0.8984 | 0.8997 | 0.9821 |
88
+ | 0.0156 | 5.0 | 19570 | nan | 0.7150 | 0.9121 | 0.8016 | 0.9641 |
89
+ | 0.0165 | 6.0 | 23484 | nan | 0.7640 | 0.8796 | 0.8177 | 0.9691 |
90
+ | 0.0225 | 7.0 | 27398 | nan | 0.8851 | 0.9098 | 0.8973 | 0.9803 |
91
+ | 0.016 | 8.0 | 31312 | nan | 0.9081 | 0.9015 | 0.9048 | 0.9792 |
92
+ | 0.0078 | 9.0 | 35226 | nan | 0.8941 | 0.8863 | 0.8902 | 0.9788 |
93
+ | 0.0061 | 10.0 | 39140 | nan | 0.9026 | 0.9002 | 0.9014 | 0.9804 |
94
+ | 0.0057 | 11.0 | 43054 | nan | 0.8793 | 0.9018 | 0.8904 | 0.9769 |
95
+ | 0.0044 | 12.0 | 46968 | nan | 0.8790 | 0.9033 | 0.8910 | 0.9785 |
96
+ | 0.0043 | 13.0 | 50882 | nan | 0.9122 | 0.9163 | 0.9142 | 0.9826 |
97
+ | 0.0003 | 14.0 | 54796 | nan | 0.9032 | 0.9070 | 0.9051 | 0.9807 |
98
+ | 0.0025 | 15.0 | 58710 | nan | 0.8903 | 0.9085 | 0.8993 | 0.9798 |
99
+
100
+
101
+ ### Framework versions (To update)
102
+
103
+ - Transformers 4.23.1
104
+ - Pytorch 1.12.1+cu113
105
+ - Datasets 2.6.1
106
+ - Tokenizers 0.13.1