Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pt
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- lener_br
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: bert-base-multilingual-cased-finetuned-lener_br-finetuned-lener-br
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: lener_br
|
22 |
+
type: lener_br
|
23 |
+
config: lener_br
|
24 |
+
split: train
|
25 |
+
args: lener_br
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.9122490993309316
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.9162574308606876
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.9142488716956804
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.982592974434832
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# bert-base-multilingual-cased-finetuned-lener_br-finetuned-lener-br
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the lener_br dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: nan (To update)
|
49 |
+
- Precision: 0.9122 (To update)
|
50 |
+
- Recall: 0.9163 (To update)
|
51 |
+
- F1: 0.9142 (To update)
|
52 |
+
- Accuracy: 0.9826 (To update)
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters (To update)
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 2e-05
|
72 |
+
- train_batch_size: 2
|
73 |
+
- eval_batch_size: 2
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 15
|
78 |
+
- mixed_precision_training: Native AMP
|
79 |
+
|
80 |
+
### Training results (To update)
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 0.068 | 1.0 | 3914 | nan | 0.6196 | 0.8604 | 0.7204 | 0.9568 |
|
85 |
+
| 0.0767 | 2.0 | 7828 | nan | 0.8270 | 0.8710 | 0.8484 | 0.9693 |
|
86 |
+
| 0.0257 | 3.0 | 11742 | nan | 0.7243 | 0.9005 | 0.8029 | 0.9639 |
|
87 |
+
| 0.0193 | 4.0 | 15656 | nan | 0.9010 | 0.8984 | 0.8997 | 0.9821 |
|
88 |
+
| 0.0156 | 5.0 | 19570 | nan | 0.7150 | 0.9121 | 0.8016 | 0.9641 |
|
89 |
+
| 0.0165 | 6.0 | 23484 | nan | 0.7640 | 0.8796 | 0.8177 | 0.9691 |
|
90 |
+
| 0.0225 | 7.0 | 27398 | nan | 0.8851 | 0.9098 | 0.8973 | 0.9803 |
|
91 |
+
| 0.016 | 8.0 | 31312 | nan | 0.9081 | 0.9015 | 0.9048 | 0.9792 |
|
92 |
+
| 0.0078 | 9.0 | 35226 | nan | 0.8941 | 0.8863 | 0.8902 | 0.9788 |
|
93 |
+
| 0.0061 | 10.0 | 39140 | nan | 0.9026 | 0.9002 | 0.9014 | 0.9804 |
|
94 |
+
| 0.0057 | 11.0 | 43054 | nan | 0.8793 | 0.9018 | 0.8904 | 0.9769 |
|
95 |
+
| 0.0044 | 12.0 | 46968 | nan | 0.8790 | 0.9033 | 0.8910 | 0.9785 |
|
96 |
+
| 0.0043 | 13.0 | 50882 | nan | 0.9122 | 0.9163 | 0.9142 | 0.9826 |
|
97 |
+
| 0.0003 | 14.0 | 54796 | nan | 0.9032 | 0.9070 | 0.9051 | 0.9807 |
|
98 |
+
| 0.0025 | 15.0 | 58710 | nan | 0.8903 | 0.9085 | 0.8993 | 0.9798 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions (To update)
|
102 |
+
|
103 |
+
- Transformers 4.23.1
|
104 |
+
- Pytorch 1.12.1+cu113
|
105 |
+
- Datasets 2.6.1
|
106 |
+
- Tokenizers 0.13.1
|