h
File size: 1,295 Bytes
f63c49e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
language: en
license: apache-2.0
tags:
- fine-tuned
- gemma
- lora
- gemma-garage
base_model: google/gemma-3-1b-pt
pipeline_tag: text-generation
---

# h

Fine-tuned google/gemma-3-1b-pt model from Gemma Garage

This model was fine-tuned using [Gemma Garage](https://github.com/your-repo/gemma-garage), a platform for fine-tuning Gemma models with LoRA.

## Model Details

- **Base Model**: google/gemma-3-1b-pt
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Platform**: Gemma Garage
- **Fine-tuned on**: 2025-07-28

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("LucasFMartins/h")
model = AutoModelForCausalLM.from_pretrained("LucasFMartins/h")

# Generate text
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

## Training Details

This model was fine-tuned using the Gemma Garage platform with the following configuration:
- Request ID: 09154b2b-316a-4310-960f-b7d5a77df291
- Training completed on: 2025-07-28 14:37:08 UTC

For more information about Gemma Garage, visit [our GitHub repository](https://github.com/your-repo/gemma-garage).