File size: 1,295 Bytes
f63c49e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
language: en
license: apache-2.0
tags:
- fine-tuned
- gemma
- lora
- gemma-garage
base_model: google/gemma-3-1b-pt
pipeline_tag: text-generation
---
# h
Fine-tuned google/gemma-3-1b-pt model from Gemma Garage
This model was fine-tuned using [Gemma Garage](https://github.com/your-repo/gemma-garage), a platform for fine-tuning Gemma models with LoRA.
## Model Details
- **Base Model**: google/gemma-3-1b-pt
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Platform**: Gemma Garage
- **Fine-tuned on**: 2025-07-28
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("LucasFMartins/h")
model = AutoModelForCausalLM.from_pretrained("LucasFMartins/h")
# Generate text
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Training Details
This model was fine-tuned using the Gemma Garage platform with the following configuration:
- Request ID: 09154b2b-316a-4310-960f-b7d5a77df291
- Training completed on: 2025-07-28 14:37:08 UTC
For more information about Gemma Garage, visit [our GitHub repository](https://github.com/your-repo/gemma-garage).
|