Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +670 -0
- config.json +28 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +62 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- loss:CosineSimilarityLoss
|
8 |
+
base_model: Snowflake/snowflake-arctic-embed-l-v2.0
|
9 |
+
pipeline_tag: sentence-similarity
|
10 |
+
library_name: sentence-transformers
|
11 |
+
---
|
12 |
+
|
13 |
+
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l-v2.0
|
14 |
+
|
15 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
### Model Description
|
20 |
+
- **Model Type:** Sentence Transformer
|
21 |
+
- **Base model:** [Snowflake/snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0) <!-- at revision 7f311bb640ad3babc0a4e3a8873240dcba44c9d2 -->
|
22 |
+
- **Maximum Sequence Length:** 8192 tokens
|
23 |
+
- **Output Dimensionality:** 1024 dimensions
|
24 |
+
- **Similarity Function:** Cosine Similarity
|
25 |
+
- **Training Dataset:**
|
26 |
+
- json
|
27 |
+
<!-- - **Language:** Unknown -->
|
28 |
+
<!-- - **License:** Unknown -->
|
29 |
+
|
30 |
+
### Model Sources
|
31 |
+
|
32 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
33 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
34 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
35 |
+
|
36 |
+
### Full Model Architecture
|
37 |
+
|
38 |
+
```
|
39 |
+
SentenceTransformer(
|
40 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
41 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
42 |
+
(2): Normalize()
|
43 |
+
)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Usage
|
47 |
+
|
48 |
+
### Direct Usage (Sentence Transformers)
|
49 |
+
|
50 |
+
First install the Sentence Transformers library:
|
51 |
+
|
52 |
+
```bash
|
53 |
+
pip install -U sentence-transformers
|
54 |
+
```
|
55 |
+
|
56 |
+
Then you can load this model and run inference.
|
57 |
+
```python
|
58 |
+
from sentence_transformers import SentenceTransformer
|
59 |
+
|
60 |
+
# Download from the 🤗 Hub
|
61 |
+
model = SentenceTransformer("LucaZilli/arctic-l-enhanced")
|
62 |
+
# Run inference
|
63 |
+
sentences = [
|
64 |
+
'The weather is lovely today.',
|
65 |
+
"It's so sunny outside!",
|
66 |
+
'He drove to the stadium.',
|
67 |
+
]
|
68 |
+
embeddings = model.encode(sentences)
|
69 |
+
print(embeddings.shape)
|
70 |
+
# [3, 1024]
|
71 |
+
|
72 |
+
# Get the similarity scores for the embeddings
|
73 |
+
similarities = model.similarity(embeddings, embeddings)
|
74 |
+
print(similarities.shape)
|
75 |
+
# [3, 3]
|
76 |
+
```
|
77 |
+
|
78 |
+
<!--
|
79 |
+
### Direct Usage (Transformers)
|
80 |
+
|
81 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
82 |
+
|
83 |
+
</details>
|
84 |
+
-->
|
85 |
+
|
86 |
+
<!--
|
87 |
+
### Downstream Usage (Sentence Transformers)
|
88 |
+
|
89 |
+
You can finetune this model on your own dataset.
|
90 |
+
|
91 |
+
<details><summary>Click to expand</summary>
|
92 |
+
|
93 |
+
</details>
|
94 |
+
-->
|
95 |
+
|
96 |
+
<!--
|
97 |
+
### Out-of-Scope Use
|
98 |
+
|
99 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
100 |
+
-->
|
101 |
+
|
102 |
+
<!--
|
103 |
+
## Bias, Risks and Limitations
|
104 |
+
|
105 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Recommendations
|
110 |
+
|
111 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
## Training Details
|
115 |
+
|
116 |
+
### Training Dataset
|
117 |
+
|
118 |
+
#### json
|
119 |
+
|
120 |
+
* Dataset: json
|
121 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, <code>score</code>, and <code>split</code>
|
122 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
123 |
+
```json
|
124 |
+
{
|
125 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
126 |
+
}
|
127 |
+
```
|
128 |
+
|
129 |
+
### Evaluation Dataset
|
130 |
+
|
131 |
+
#### json
|
132 |
+
|
133 |
+
* Dataset: json
|
134 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, <code>score</code>, and <code>split</code>
|
135 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
136 |
+
```json
|
137 |
+
{
|
138 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
### Training Hyperparameters
|
143 |
+
#### Non-Default Hyperparameters
|
144 |
+
|
145 |
+
- `eval_strategy`: steps
|
146 |
+
- `per_device_train_batch_size`: 12
|
147 |
+
- `per_device_eval_batch_size`: 12
|
148 |
+
- `learning_rate`: 4.000000000000001e-06
|
149 |
+
- `max_steps`: 9291
|
150 |
+
- `warmup_ratio`: 0.1
|
151 |
+
- `fp16`: True
|
152 |
+
- `load_best_model_at_end`: True
|
153 |
+
|
154 |
+
#### All Hyperparameters
|
155 |
+
<details><summary>Click to expand</summary>
|
156 |
+
|
157 |
+
- `overwrite_output_dir`: False
|
158 |
+
- `do_predict`: False
|
159 |
+
- `eval_strategy`: steps
|
160 |
+
- `prediction_loss_only`: True
|
161 |
+
- `per_device_train_batch_size`: 12
|
162 |
+
- `per_device_eval_batch_size`: 12
|
163 |
+
- `per_gpu_train_batch_size`: None
|
164 |
+
- `per_gpu_eval_batch_size`: None
|
165 |
+
- `gradient_accumulation_steps`: 1
|
166 |
+
- `eval_accumulation_steps`: None
|
167 |
+
- `torch_empty_cache_steps`: None
|
168 |
+
- `learning_rate`: 4.000000000000001e-06
|
169 |
+
- `weight_decay`: 0.0
|
170 |
+
- `adam_beta1`: 0.9
|
171 |
+
- `adam_beta2`: 0.999
|
172 |
+
- `adam_epsilon`: 1e-08
|
173 |
+
- `max_grad_norm`: 1.0
|
174 |
+
- `num_train_epochs`: 3
|
175 |
+
- `max_steps`: 9291
|
176 |
+
- `lr_scheduler_type`: linear
|
177 |
+
- `lr_scheduler_kwargs`: {}
|
178 |
+
- `warmup_ratio`: 0.1
|
179 |
+
- `warmup_steps`: 0
|
180 |
+
- `log_level`: passive
|
181 |
+
- `log_level_replica`: warning
|
182 |
+
- `log_on_each_node`: True
|
183 |
+
- `logging_nan_inf_filter`: True
|
184 |
+
- `save_safetensors`: True
|
185 |
+
- `save_on_each_node`: False
|
186 |
+
- `save_only_model`: False
|
187 |
+
- `restore_callback_states_from_checkpoint`: False
|
188 |
+
- `no_cuda`: False
|
189 |
+
- `use_cpu`: False
|
190 |
+
- `use_mps_device`: False
|
191 |
+
- `seed`: 42
|
192 |
+
- `data_seed`: None
|
193 |
+
- `jit_mode_eval`: False
|
194 |
+
- `use_ipex`: False
|
195 |
+
- `bf16`: False
|
196 |
+
- `fp16`: True
|
197 |
+
- `fp16_opt_level`: O1
|
198 |
+
- `half_precision_backend`: auto
|
199 |
+
- `bf16_full_eval`: False
|
200 |
+
- `fp16_full_eval`: False
|
201 |
+
- `tf32`: None
|
202 |
+
- `local_rank`: 0
|
203 |
+
- `ddp_backend`: None
|
204 |
+
- `tpu_num_cores`: None
|
205 |
+
- `tpu_metrics_debug`: False
|
206 |
+
- `debug`: []
|
207 |
+
- `dataloader_drop_last`: False
|
208 |
+
- `dataloader_num_workers`: 0
|
209 |
+
- `dataloader_prefetch_factor`: None
|
210 |
+
- `past_index`: -1
|
211 |
+
- `disable_tqdm`: False
|
212 |
+
- `remove_unused_columns`: True
|
213 |
+
- `label_names`: None
|
214 |
+
- `load_best_model_at_end`: True
|
215 |
+
- `ignore_data_skip`: False
|
216 |
+
- `fsdp`: []
|
217 |
+
- `fsdp_min_num_params`: 0
|
218 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
219 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
220 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
221 |
+
- `deepspeed`: None
|
222 |
+
- `label_smoothing_factor`: 0.0
|
223 |
+
- `optim`: adamw_torch
|
224 |
+
- `optim_args`: None
|
225 |
+
- `adafactor`: False
|
226 |
+
- `group_by_length`: False
|
227 |
+
- `length_column_name`: length
|
228 |
+
- `ddp_find_unused_parameters`: None
|
229 |
+
- `ddp_bucket_cap_mb`: None
|
230 |
+
- `ddp_broadcast_buffers`: False
|
231 |
+
- `dataloader_pin_memory`: True
|
232 |
+
- `dataloader_persistent_workers`: False
|
233 |
+
- `skip_memory_metrics`: True
|
234 |
+
- `use_legacy_prediction_loop`: False
|
235 |
+
- `push_to_hub`: False
|
236 |
+
- `resume_from_checkpoint`: None
|
237 |
+
- `hub_model_id`: None
|
238 |
+
- `hub_strategy`: every_save
|
239 |
+
- `hub_private_repo`: None
|
240 |
+
- `hub_always_push`: False
|
241 |
+
- `gradient_checkpointing`: False
|
242 |
+
- `gradient_checkpointing_kwargs`: None
|
243 |
+
- `include_inputs_for_metrics`: False
|
244 |
+
- `include_for_metrics`: []
|
245 |
+
- `eval_do_concat_batches`: True
|
246 |
+
- `fp16_backend`: auto
|
247 |
+
- `push_to_hub_model_id`: None
|
248 |
+
- `push_to_hub_organization`: None
|
249 |
+
- `mp_parameters`:
|
250 |
+
- `auto_find_batch_size`: False
|
251 |
+
- `full_determinism`: False
|
252 |
+
- `torchdynamo`: None
|
253 |
+
- `ray_scope`: last
|
254 |
+
- `ddp_timeout`: 1800
|
255 |
+
- `torch_compile`: False
|
256 |
+
- `torch_compile_backend`: None
|
257 |
+
- `torch_compile_mode`: None
|
258 |
+
- `dispatch_batches`: None
|
259 |
+
- `split_batches`: None
|
260 |
+
- `include_tokens_per_second`: False
|
261 |
+
- `include_num_input_tokens_seen`: False
|
262 |
+
- `neftune_noise_alpha`: None
|
263 |
+
- `optim_target_modules`: None
|
264 |
+
- `batch_eval_metrics`: False
|
265 |
+
- `eval_on_start`: False
|
266 |
+
- `use_liger_kernel`: False
|
267 |
+
- `eval_use_gather_object`: False
|
268 |
+
- `average_tokens_across_devices`: False
|
269 |
+
- `prompts`: None
|
270 |
+
- `batch_sampler`: batch_sampler
|
271 |
+
- `multi_dataset_batch_sampler`: proportional
|
272 |
+
|
273 |
+
</details>
|
274 |
+
|
275 |
+
### Training Logs
|
276 |
+
<details><summary>Click to expand</summary>
|
277 |
+
|
278 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
279 |
+
|:------:|:----:|:-------------:|:---------------:|
|
280 |
+
| 0.0011 | 10 | 0.1329 | - |
|
281 |
+
| 0.0022 | 20 | 0.1211 | - |
|
282 |
+
| 0.0032 | 30 | 0.1533 | - |
|
283 |
+
| 0.0043 | 40 | 0.1325 | - |
|
284 |
+
| 0.0054 | 50 | 0.1076 | - |
|
285 |
+
| 0.0065 | 60 | 0.1349 | - |
|
286 |
+
| 0.0075 | 70 | 0.1224 | - |
|
287 |
+
| 0.0086 | 80 | 0.1062 | - |
|
288 |
+
| 0.0097 | 90 | 0.1026 | - |
|
289 |
+
| 0.0108 | 100 | 0.0873 | - |
|
290 |
+
| 0.0118 | 110 | 0.0733 | - |
|
291 |
+
| 0.0129 | 120 | 0.0799 | - |
|
292 |
+
| 0.0140 | 130 | 0.0773 | - |
|
293 |
+
| 0.0151 | 140 | 0.0666 | - |
|
294 |
+
| 0.0161 | 150 | 0.069 | 0.0615 |
|
295 |
+
| 0.0172 | 160 | 0.0639 | - |
|
296 |
+
| 0.0183 | 170 | 0.063 | - |
|
297 |
+
| 0.0194 | 180 | 0.0739 | - |
|
298 |
+
| 0.0204 | 190 | 0.0708 | - |
|
299 |
+
| 0.0215 | 200 | 0.0532 | - |
|
300 |
+
| 0.0226 | 210 | 0.0573 | - |
|
301 |
+
| 0.0237 | 220 | 0.0503 | - |
|
302 |
+
| 0.0248 | 230 | 0.0564 | - |
|
303 |
+
| 0.0258 | 240 | 0.0592 | - |
|
304 |
+
| 0.0269 | 250 | 0.0555 | - |
|
305 |
+
| 0.0280 | 260 | 0.0513 | - |
|
306 |
+
| 0.0291 | 270 | 0.055 | - |
|
307 |
+
| 0.0301 | 280 | 0.0522 | - |
|
308 |
+
| 0.0312 | 290 | 0.054 | - |
|
309 |
+
| 0.0323 | 300 | 0.0548 | 0.0531 |
|
310 |
+
| 0.0334 | 310 | 0.0495 | - |
|
311 |
+
| 0.0344 | 320 | 0.047 | - |
|
312 |
+
| 0.0355 | 330 | 0.0551 | - |
|
313 |
+
| 0.0366 | 340 | 0.0534 | - |
|
314 |
+
| 0.0377 | 350 | 0.0492 | - |
|
315 |
+
| 0.0387 | 360 | 0.0584 | - |
|
316 |
+
| 0.0398 | 370 | 0.0452 | - |
|
317 |
+
| 0.0409 | 380 | 0.0572 | - |
|
318 |
+
| 0.0420 | 390 | 0.0423 | - |
|
319 |
+
| 0.0431 | 400 | 0.0533 | - |
|
320 |
+
| 0.0441 | 410 | 0.0445 | - |
|
321 |
+
| 0.0452 | 420 | 0.0513 | - |
|
322 |
+
| 0.0463 | 430 | 0.0446 | - |
|
323 |
+
| 0.0474 | 440 | 0.0412 | - |
|
324 |
+
| 0.0484 | 450 | 0.0456 | 0.0544 |
|
325 |
+
| 0.0495 | 460 | 0.0401 | - |
|
326 |
+
| 0.0506 | 470 | 0.0392 | - |
|
327 |
+
| 0.0517 | 480 | 0.042 | - |
|
328 |
+
| 0.0527 | 490 | 0.0513 | - |
|
329 |
+
| 0.0538 | 500 | 0.0368 | - |
|
330 |
+
| 0.0549 | 510 | 0.043 | - |
|
331 |
+
| 0.0560 | 520 | 0.0418 | - |
|
332 |
+
| 0.0570 | 530 | 0.0419 | - |
|
333 |
+
| 0.0581 | 540 | 0.0377 | - |
|
334 |
+
| 0.0592 | 550 | 0.0354 | - |
|
335 |
+
| 0.0603 | 560 | 0.0358 | - |
|
336 |
+
| 0.0613 | 570 | 0.0474 | - |
|
337 |
+
| 0.0624 | 580 | 0.0384 | - |
|
338 |
+
| 0.0635 | 590 | 0.0411 | - |
|
339 |
+
| 0.0646 | 600 | 0.0417 | 0.0558 |
|
340 |
+
| 0.0657 | 610 | 0.0389 | - |
|
341 |
+
| 0.0667 | 620 | 0.0418 | - |
|
342 |
+
| 0.0678 | 630 | 0.0391 | - |
|
343 |
+
| 0.0689 | 640 | 0.0354 | - |
|
344 |
+
| 0.0700 | 650 | 0.0428 | - |
|
345 |
+
| 0.0710 | 660 | 0.0453 | - |
|
346 |
+
| 0.0721 | 670 | 0.0333 | - |
|
347 |
+
| 0.0732 | 680 | 0.0466 | - |
|
348 |
+
| 0.0743 | 690 | 0.0406 | - |
|
349 |
+
| 0.0753 | 700 | 0.0378 | - |
|
350 |
+
| 0.0764 | 710 | 0.0399 | - |
|
351 |
+
| 0.0775 | 720 | 0.036 | - |
|
352 |
+
| 0.0786 | 730 | 0.0403 | - |
|
353 |
+
| 0.0796 | 740 | 0.0408 | - |
|
354 |
+
| 0.0807 | 750 | 0.0335 | 0.0531 |
|
355 |
+
| 0.0818 | 760 | 0.0335 | - |
|
356 |
+
| 0.0829 | 770 | 0.0387 | - |
|
357 |
+
| 0.0840 | 780 | 0.035 | - |
|
358 |
+
| 0.0850 | 790 | 0.0351 | - |
|
359 |
+
| 0.0861 | 800 | 0.0407 | - |
|
360 |
+
| 0.0872 | 810 | 0.0371 | - |
|
361 |
+
| 0.0883 | 820 | 0.0387 | - |
|
362 |
+
| 0.0893 | 830 | 0.0365 | - |
|
363 |
+
| 0.0904 | 840 | 0.0395 | - |
|
364 |
+
| 0.0915 | 850 | 0.0403 | - |
|
365 |
+
| 0.0926 | 860 | 0.04 | - |
|
366 |
+
| 0.0936 | 870 | 0.0356 | - |
|
367 |
+
| 0.0947 | 880 | 0.0333 | - |
|
368 |
+
| 0.0958 | 890 | 0.0269 | - |
|
369 |
+
| 0.0969 | 900 | 0.0341 | 0.0455 |
|
370 |
+
| 0.0979 | 910 | 0.0294 | - |
|
371 |
+
| 0.0990 | 920 | 0.0269 | - |
|
372 |
+
| 0.1001 | 930 | 0.0293 | - |
|
373 |
+
| 0.1012 | 940 | 0.034 | - |
|
374 |
+
| 0.1022 | 950 | 0.0288 | - |
|
375 |
+
| 0.1033 | 960 | 0.017 | - |
|
376 |
+
| 0.1044 | 970 | 0.0345 | - |
|
377 |
+
| 0.1055 | 980 | 0.0331 | - |
|
378 |
+
| 0.1066 | 990 | 0.0279 | - |
|
379 |
+
| 0.1076 | 1000 | 0.0255 | - |
|
380 |
+
| 0.1087 | 1010 | 0.0279 | - |
|
381 |
+
| 0.1098 | 1020 | 0.0232 | - |
|
382 |
+
| 0.1109 | 1030 | 0.0299 | - |
|
383 |
+
| 0.1119 | 1040 | 0.0268 | - |
|
384 |
+
| 0.1130 | 1050 | 0.0196 | 0.0468 |
|
385 |
+
| 0.1141 | 1060 | 0.0235 | - |
|
386 |
+
| 0.1152 | 1070 | 0.0305 | - |
|
387 |
+
| 0.1162 | 1080 | 0.0429 | - |
|
388 |
+
| 0.1173 | 1090 | 0.043 | - |
|
389 |
+
| 0.1184 | 1100 | 0.0408 | - |
|
390 |
+
| 0.1195 | 1110 | 0.0387 | - |
|
391 |
+
| 0.1205 | 1120 | 0.0389 | - |
|
392 |
+
| 0.1216 | 1130 | 0.0452 | - |
|
393 |
+
| 0.1227 | 1140 | 0.0424 | - |
|
394 |
+
| 0.1238 | 1150 | 0.0388 | - |
|
395 |
+
| 0.1249 | 1160 | 0.0474 | - |
|
396 |
+
| 0.1259 | 1170 | 0.0303 | - |
|
397 |
+
| 0.1270 | 1180 | 0.0379 | - |
|
398 |
+
| 0.1281 | 1190 | 0.033 | - |
|
399 |
+
| 0.1292 | 1200 | 0.0303 | 0.0361 |
|
400 |
+
| 0.1302 | 1210 | 0.0361 | - |
|
401 |
+
| 0.1313 | 1220 | 0.0366 | - |
|
402 |
+
| 0.1324 | 1230 | 0.0359 | - |
|
403 |
+
| 0.1335 | 1240 | 0.0304 | - |
|
404 |
+
| 0.1345 | 1250 | 0.0265 | - |
|
405 |
+
| 0.1356 | 1260 | 0.0286 | - |
|
406 |
+
| 0.1367 | 1270 | 0.0326 | - |
|
407 |
+
| 0.1378 | 1280 | 0.0324 | - |
|
408 |
+
| 0.1388 | 1290 | 0.0304 | - |
|
409 |
+
| 0.1399 | 1300 | 0.0328 | - |
|
410 |
+
| 0.1410 | 1310 | 0.0339 | - |
|
411 |
+
| 0.1421 | 1320 | 0.0362 | - |
|
412 |
+
| 0.1431 | 1330 | 0.0318 | - |
|
413 |
+
| 0.1442 | 1340 | 0.0291 | - |
|
414 |
+
| 0.1453 | 1350 | 0.0241 | 0.0345 |
|
415 |
+
| 0.1464 | 1360 | 0.0233 | - |
|
416 |
+
| 0.1475 | 1370 | 0.029 | - |
|
417 |
+
| 0.1485 | 1380 | 0.0224 | - |
|
418 |
+
| 0.1496 | 1390 | 0.0364 | - |
|
419 |
+
| 0.1507 | 1400 | 0.033 | - |
|
420 |
+
| 0.1518 | 1410 | 0.0337 | - |
|
421 |
+
| 0.1528 | 1420 | 0.0328 | - |
|
422 |
+
| 0.1539 | 1430 | 0.0253 | - |
|
423 |
+
| 0.1550 | 1440 | 0.028 | - |
|
424 |
+
| 0.1561 | 1450 | 0.023 | - |
|
425 |
+
| 0.1571 | 1460 | 0.034 | - |
|
426 |
+
| 0.1582 | 1470 | 0.0296 | - |
|
427 |
+
| 0.1593 | 1480 | 0.0278 | - |
|
428 |
+
| 0.1604 | 1490 | 0.0357 | - |
|
429 |
+
| 0.1614 | 1500 | 0.0267 | 0.0357 |
|
430 |
+
| 0.1625 | 1510 | 0.0372 | - |
|
431 |
+
| 0.1636 | 1520 | 0.0264 | - |
|
432 |
+
| 0.1647 | 1530 | 0.0239 | - |
|
433 |
+
| 0.1658 | 1540 | 0.0307 | - |
|
434 |
+
| 0.1668 | 1550 | 0.0288 | - |
|
435 |
+
| 0.1679 | 1560 | 0.0275 | - |
|
436 |
+
| 0.1690 | 1570 | 0.0228 | - |
|
437 |
+
| 0.1701 | 1580 | 0.0219 | - |
|
438 |
+
| 0.1711 | 1590 | 0.0243 | - |
|
439 |
+
| 0.1722 | 1600 | 0.0191 | - |
|
440 |
+
| 0.1733 | 1610 | 0.018 | - |
|
441 |
+
| 0.1744 | 1620 | 0.0226 | - |
|
442 |
+
| 0.1754 | 1630 | 0.0261 | - |
|
443 |
+
| 0.1765 | 1640 | 0.0248 | - |
|
444 |
+
| 0.1776 | 1650 | 0.0199 | 0.0359 |
|
445 |
+
| 0.1787 | 1660 | 0.0309 | - |
|
446 |
+
| 0.1797 | 1670 | 0.0213 | - |
|
447 |
+
| 0.1808 | 1680 | 0.0221 | - |
|
448 |
+
| 0.1819 | 1690 | 0.0257 | - |
|
449 |
+
| 0.1830 | 1700 | 0.0219 | - |
|
450 |
+
| 0.1840 | 1710 | 0.0294 | - |
|
451 |
+
| 0.1851 | 1720 | 0.021 | - |
|
452 |
+
| 0.1862 | 1730 | 0.0215 | - |
|
453 |
+
| 0.1873 | 1740 | 0.0187 | - |
|
454 |
+
| 0.1884 | 1750 | 0.021 | - |
|
455 |
+
| 0.1894 | 1760 | 0.02 | - |
|
456 |
+
| 0.1905 | 1770 | 0.0208 | - |
|
457 |
+
| 0.1916 | 1780 | 0.0184 | - |
|
458 |
+
| 0.1927 | 1790 | 0.0182 | - |
|
459 |
+
| 0.1937 | 1800 | 0.0158 | 0.0398 |
|
460 |
+
| 0.1948 | 1810 | 0.0191 | - |
|
461 |
+
| 0.1959 | 1820 | 0.0256 | - |
|
462 |
+
| 0.1970 | 1830 | 0.0199 | - |
|
463 |
+
| 0.1980 | 1840 | 0.0163 | - |
|
464 |
+
| 0.1991 | 1850 | 0.0241 | - |
|
465 |
+
| 0.2002 | 1860 | 0.0153 | - |
|
466 |
+
| 0.2013 | 1870 | 0.0198 | - |
|
467 |
+
| 0.2023 | 1880 | 0.0177 | - |
|
468 |
+
| 0.2034 | 1890 | 0.0172 | - |
|
469 |
+
| 0.2045 | 1900 | 0.0154 | - |
|
470 |
+
| 0.2056 | 1910 | 0.0213 | - |
|
471 |
+
| 0.2067 | 1920 | 0.0159 | - |
|
472 |
+
| 0.2077 | 1930 | 0.0227 | - |
|
473 |
+
| 0.2088 | 1940 | 0.0149 | - |
|
474 |
+
| 0.2099 | 1950 | 0.0198 | 0.0423 |
|
475 |
+
| 0.2110 | 1960 | 0.0178 | - |
|
476 |
+
| 0.2120 | 1970 | 0.0153 | - |
|
477 |
+
| 0.2131 | 1980 | 0.0163 | - |
|
478 |
+
| 0.2142 | 1990 | 0.0161 | - |
|
479 |
+
| 0.2153 | 2000 | 0.014 | - |
|
480 |
+
| 0.2163 | 2010 | 0.0143 | - |
|
481 |
+
| 0.2174 | 2020 | 0.0188 | - |
|
482 |
+
| 0.2185 | 2030 | 0.0159 | - |
|
483 |
+
| 0.2196 | 2040 | 0.0189 | - |
|
484 |
+
| 0.2206 | 2050 | 0.02 | - |
|
485 |
+
| 0.2217 | 2060 | 0.0152 | - |
|
486 |
+
| 0.2228 | 2070 | 0.0227 | - |
|
487 |
+
| 0.2239 | 2080 | 0.0194 | - |
|
488 |
+
| 0.2249 | 2090 | 0.0156 | - |
|
489 |
+
| 0.2260 | 2100 | 0.0159 | 0.0449 |
|
490 |
+
| 0.2271 | 2110 | 0.0156 | - |
|
491 |
+
| 0.2282 | 2120 | 0.0152 | - |
|
492 |
+
| 0.2293 | 2130 | 0.016 | - |
|
493 |
+
| 0.2303 | 2140 | 0.0124 | - |
|
494 |
+
| 0.2314 | 2150 | 0.0157 | - |
|
495 |
+
| 0.2325 | 2160 | 0.0217 | - |
|
496 |
+
| 0.2336 | 2170 | 0.0146 | - |
|
497 |
+
| 0.2346 | 2180 | 0.015 | - |
|
498 |
+
| 0.2357 | 2190 | 0.0139 | - |
|
499 |
+
| 0.2368 | 2200 | 0.0139 | - |
|
500 |
+
| 0.2379 | 2210 | 0.0181 | - |
|
501 |
+
| 0.2389 | 2220 | 0.0196 | - |
|
502 |
+
| 0.2400 | 2230 | 0.0163 | - |
|
503 |
+
| 0.2411 | 2240 | 0.014 | - |
|
504 |
+
| 0.2422 | 2250 | 0.015 | 0.0469 |
|
505 |
+
| 0.2432 | 2260 | 0.0156 | - |
|
506 |
+
| 0.2443 | 2270 | 0.0172 | - |
|
507 |
+
| 0.2454 | 2280 | 0.016 | - |
|
508 |
+
| 0.2465 | 2290 | 0.015 | - |
|
509 |
+
| 0.2476 | 2300 | 0.0171 | - |
|
510 |
+
| 0.2486 | 2310 | 0.0151 | - |
|
511 |
+
| 0.2497 | 2320 | 0.0147 | - |
|
512 |
+
| 0.2508 | 2330 | 0.0197 | - |
|
513 |
+
| 0.2519 | 2340 | 0.0153 | - |
|
514 |
+
| 0.2529 | 2350 | 0.0145 | - |
|
515 |
+
| 0.2540 | 2360 | 0.0143 | - |
|
516 |
+
| 0.2551 | 2370 | 0.0122 | - |
|
517 |
+
| 0.2562 | 2380 | 0.0151 | - |
|
518 |
+
| 0.2572 | 2390 | 0.0143 | - |
|
519 |
+
| 0.2583 | 2400 | 0.0136 | 0.0502 |
|
520 |
+
| 0.2594 | 2410 | 0.0137 | - |
|
521 |
+
| 0.2605 | 2420 | 0.0143 | - |
|
522 |
+
| 0.2615 | 2430 | 0.0153 | - |
|
523 |
+
| 0.2626 | 2440 | 0.019 | - |
|
524 |
+
| 0.2637 | 2450 | 0.0125 | - |
|
525 |
+
| 0.2648 | 2460 | 0.0146 | - |
|
526 |
+
| 0.2658 | 2470 | 0.0154 | - |
|
527 |
+
| 0.2669 | 2480 | 0.0158 | - |
|
528 |
+
| 0.2680 | 2490 | 0.0129 | - |
|
529 |
+
| 0.2691 | 2500 | 0.0131 | - |
|
530 |
+
| 0.2702 | 2510 | 0.0217 | - |
|
531 |
+
| 0.2712 | 2520 | 0.0132 | - |
|
532 |
+
| 0.2723 | 2530 | 0.0133 | - |
|
533 |
+
| 0.2734 | 2540 | 0.0146 | - |
|
534 |
+
| 0.2745 | 2550 | 0.0152 | 0.0555 |
|
535 |
+
| 0.2755 | 2560 | 0.014 | - |
|
536 |
+
| 0.2766 | 2570 | 0.0174 | - |
|
537 |
+
| 0.2777 | 2580 | 0.0161 | - |
|
538 |
+
| 0.2788 | 2590 | 0.0145 | - |
|
539 |
+
| 0.2798 | 2600 | 0.0193 | - |
|
540 |
+
| 0.2809 | 2610 | 0.0145 | - |
|
541 |
+
| 0.2820 | 2620 | 0.0146 | - |
|
542 |
+
| 0.2831 | 2630 | 0.0129 | - |
|
543 |
+
| 0.2841 | 2640 | 0.0158 | - |
|
544 |
+
| 0.2852 | 2650 | 0.0165 | - |
|
545 |
+
| 0.2863 | 2660 | 0.0135 | - |
|
546 |
+
| 0.2874 | 2670 | 0.0163 | - |
|
547 |
+
| 0.2885 | 2680 | 0.0159 | - |
|
548 |
+
| 0.2895 | 2690 | 0.0146 | - |
|
549 |
+
| 0.2906 | 2700 | 0.0186 | 0.0531 |
|
550 |
+
| 0.2917 | 2710 | 0.0161 | - |
|
551 |
+
| 0.2928 | 2720 | 0.0149 | - |
|
552 |
+
| 0.2938 | 2730 | 0.0147 | - |
|
553 |
+
| 0.2949 | 2740 | 0.0128 | - |
|
554 |
+
| 0.2960 | 2750 | 0.0198 | - |
|
555 |
+
| 0.2971 | 2760 | 0.0123 | - |
|
556 |
+
| 0.2981 | 2770 | 0.0133 | - |
|
557 |
+
| 0.2992 | 2780 | 0.0146 | - |
|
558 |
+
| 0.3003 | 2790 | 0.0133 | - |
|
559 |
+
| 0.3014 | 2800 | 0.0158 | - |
|
560 |
+
| 0.3024 | 2810 | 0.0125 | - |
|
561 |
+
| 0.3035 | 2820 | 0.0122 | - |
|
562 |
+
| 0.3046 | 2830 | 0.0129 | - |
|
563 |
+
| 0.3057 | 2840 | 0.0132 | - |
|
564 |
+
| 0.3067 | 2850 | 0.0138 | 0.0472 |
|
565 |
+
| 0.3078 | 2860 | 0.0134 | - |
|
566 |
+
| 0.3089 | 2870 | 0.0142 | - |
|
567 |
+
| 0.3100 | 2880 | 0.0141 | - |
|
568 |
+
| 0.3111 | 2890 | 0.019 | - |
|
569 |
+
| 0.3121 | 2900 | 0.0127 | - |
|
570 |
+
| 0.3132 | 2910 | 0.0117 | - |
|
571 |
+
| 0.3143 | 2920 | 0.0166 | - |
|
572 |
+
| 0.3154 | 2930 | 0.0365 | - |
|
573 |
+
| 0.3164 | 2940 | 0.0328 | - |
|
574 |
+
| 0.3175 | 2950 | 0.0344 | - |
|
575 |
+
| 0.3186 | 2960 | 0.0345 | - |
|
576 |
+
| 0.3197 | 2970 | 0.0312 | - |
|
577 |
+
| 0.3207 | 2980 | 0.017 | - |
|
578 |
+
| 0.3218 | 2990 | 0.0176 | - |
|
579 |
+
| 0.3229 | 3000 | 0.0145 | 0.0400 |
|
580 |
+
| 0.3240 | 3010 | 0.0116 | - |
|
581 |
+
| 0.3250 | 3020 | 0.018 | - |
|
582 |
+
| 0.3261 | 3030 | 0.017 | - |
|
583 |
+
| 0.3272 | 3040 | 0.0114 | - |
|
584 |
+
| 0.3283 | 3050 | 0.0124 | - |
|
585 |
+
| 0.3294 | 3060 | 0.012 | - |
|
586 |
+
| 0.3304 | 3070 | 0.0118 | - |
|
587 |
+
| 0.3315 | 3080 | 0.01 | - |
|
588 |
+
| 0.3326 | 3090 | 0.0147 | - |
|
589 |
+
| 1.0002 | 3100 | 0.0212 | - |
|
590 |
+
| 1.0013 | 3110 | 0.0488 | - |
|
591 |
+
| 1.0024 | 3120 | 0.0495 | - |
|
592 |
+
| 1.0034 | 3130 | 0.0384 | - |
|
593 |
+
| 1.0045 | 3140 | 0.0422 | - |
|
594 |
+
| 1.0056 | 3150 | 0.0326 | 0.0453 |
|
595 |
+
| 1.0067 | 3160 | 0.0375 | - |
|
596 |
+
| 1.0077 | 3170 | 0.0397 | - |
|
597 |
+
| 1.0088 | 3180 | 0.0469 | - |
|
598 |
+
| 1.0099 | 3190 | 0.0462 | - |
|
599 |
+
| 1.0110 | 3200 | 0.034 | - |
|
600 |
+
| 1.0121 | 3210 | 0.048 | - |
|
601 |
+
| 1.0131 | 3220 | 0.0377 | - |
|
602 |
+
| 1.0142 | 3230 | 0.0299 | - |
|
603 |
+
| 1.0153 | 3240 | 0.0344 | - |
|
604 |
+
| 1.0164 | 3250 | 0.04 | - |
|
605 |
+
| 1.0174 | 3260 | 0.0399 | - |
|
606 |
+
| 1.0185 | 3270 | 0.037 | - |
|
607 |
+
| 1.0196 | 3280 | 0.0365 | - |
|
608 |
+
| 1.0207 | 3290 | 0.039 | - |
|
609 |
+
| 1.0217 | 3300 | 0.0355 | 0.0462 |
|
610 |
+
| 1.0228 | 3310 | 0.0328 | - |
|
611 |
+
| 1.0239 | 3320 | 0.0297 | - |
|
612 |
+
| 1.0250 | 3330 | 0.031 | - |
|
613 |
+
| 1.0260 | 3340 | 0.0387 | - |
|
614 |
+
| 1.0271 | 3350 | 0.0297 | - |
|
615 |
+
| 1.0282 | 3360 | 0.0355 | - |
|
616 |
+
| 1.0293 | 3370 | 0.0399 | - |
|
617 |
+
| 1.0304 | 3380 | 0.0321 | - |
|
618 |
+
| 1.0314 | 3390 | 0.0265 | - |
|
619 |
+
| 1.0325 | 3400 | 0.0345 | - |
|
620 |
+
| 1.0336 | 3410 | 0.0276 | - |
|
621 |
+
| 1.0347 | 3420 | 0.036 | - |
|
622 |
+
| 1.0357 | 3430 | 0.0295 | - |
|
623 |
+
| 1.0368 | 3440 | 0.036 | - |
|
624 |
+
| 1.0379 | 3450 | 0.032 | 0.0434 |
|
625 |
+
|
626 |
+
</details>
|
627 |
+
|
628 |
+
### Framework Versions
|
629 |
+
- Python: 3.10.14
|
630 |
+
- Sentence Transformers: 3.4.1
|
631 |
+
- Transformers: 4.49.0
|
632 |
+
- PyTorch: 2.2.2
|
633 |
+
- Accelerate: 1.4.0
|
634 |
+
- Datasets: 3.3.2
|
635 |
+
- Tokenizers: 0.21.0
|
636 |
+
|
637 |
+
## Citation
|
638 |
+
|
639 |
+
### BibTeX
|
640 |
+
|
641 |
+
#### Sentence Transformers
|
642 |
+
```bibtex
|
643 |
+
@inproceedings{reimers-2019-sentence-bert,
|
644 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
645 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
646 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
647 |
+
month = "11",
|
648 |
+
year = "2019",
|
649 |
+
publisher = "Association for Computational Linguistics",
|
650 |
+
url = "https://arxiv.org/abs/1908.10084",
|
651 |
+
}
|
652 |
+
```
|
653 |
+
|
654 |
+
<!--
|
655 |
+
## Glossary
|
656 |
+
|
657 |
+
*Clearly define terms in order to be accessible across audiences.*
|
658 |
+
-->
|
659 |
+
|
660 |
+
<!--
|
661 |
+
## Model Card Authors
|
662 |
+
|
663 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
664 |
+
-->
|
665 |
+
|
666 |
+
<!--
|
667 |
+
## Model Card Contact
|
668 |
+
|
669 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
670 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "arctic-l-wopenai-enhanced/checkpoint-3450",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.49.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.2.2"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "query: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1804d535a0b55ed7fe09ef40a24b9a4bb740e310dfab81506251d2d9863ef33e
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
|
3 |
+
size 17083053
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 8192,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "<pad>",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "</s>",
|
57 |
+
"stride": 0,
|
58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "<unk>"
|
62 |
+
}
|