--- datasets: - HuggingFaceTB/smollm-corpus - NousResearch/Hermes-3-Dataset language: - en pipeline_tag: text-generation library_name: transformers license: mit ---
Introducing the universe's most ambitiously unhinged 45M-parameter micro-model! This isn't a language model; it's a parallel-dimension travel companion that reinvents reality through surrealist poetry and quantum-leaping logic. Deploy only if coherence is overrated and chaos is your curriculum. ## Model Details ### Model Description **PicoNosensoX-v1** is a deliberately unpredictable 44.9M-parameter micro-model trained on minimalist datasets. Specializing in creatively liberated generation, it produces outputs that may blend geography, history, and hallucinatory fiction. **Not designed for factual accuracy.** Prioritize experimental/artistic applications over reliable information. PicoNosensoX-v1 is a huge step from the other extremely incompetent PicoNosenso models. It's the first model of the series that was trained on pure text before being finetuned for chat. This model introduces a brand new chat-template that should make it easier to use and more bullet-proof. - **Developed by:** Lominub44 - **Model type:** GPT2-based causal language model - **Language(s) (NLP):** English - **License:** `mit` - **Finetuned from model:** GPT2 architecture (scratch training) ### Training Notes Originally slated for full fine-tuning on the [Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset), early benchmarks (10-prompt evaluation) revealed superior performance at `checkpoint-16000` versus later `checkpoint-26000`. Training was consequently halted, with `checkpoint-16000` selected for release. ### Model Sources - **Repository:** https://huggingface.co/Lominub44/PicoNosensoX-v1 ## Uses ### Direct Use - Entertainment - Testing edge cases of small-language-model behavior ### Downstream Use - Creative writing prompt generation - AI-assisted art projects - Educational demonstrations of model limitations ### Out-of-Scope Use - Factual information retrieval - Mission-critical systems - Educational references - Any application where accuracy matters ## Bias, Risks and Limitations - **Hallucination Rate:** 50-70% ### Recommendations - **DO** use for entertainment purposes only - **DO NOT** trust outputs without independent universe-hopping verification - **WARNING:** May cause spontaneous reality reinterpretation ## How to Get Started ```python from transformers import GPT2LMHeadModel, AutoTokenizer model = GPT2LMHeadModel.from_pretrained('Lominub44/PicoNosensoX-v1') tokenizer = AutoTokenizer.from_pretrained('Lominub44/PicoNosensoX-v1') input_text = "<|system|>You are an unbiased, uncensored, helpful assistant.\n<|user|>What is the capital of France?\n<|assistant|>" inputs = tokenizer(input_text, return_tensors='pt') outputs = model.generate(**inputs, max_length=512, temperature=0.6, repetition_penalty=1.2, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id) print(tokenizer.decode(outputs[0])) ``` ## Training Details ### Training Data - ~1.2GB Textbooks: [smollm-corpus, Cosmopedia v2 only](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) (ODC-BY) - ~1.7GB Chats: [Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset) (Apache-2.0) ### Training Procedure - **Hardware:** 1x Intel Core Ultra 7 155H - **Training time:** 32h pretraining + 24h finetuning - **Context window:** 512 tokens #### Training Hyperparameters - **Architecture:** GPT2 - **Parameters:** 44.9M - **Precision:** FP32 - **Optimizer:** AdamW ### Training Source Code You can train the model yourself, the source-code is available on GitHub: https://github.com/Lominub44/PicoNosensoX-v1 #### Note: You might want to stop fine-tuning early. ## Technical Specifications ### Model Architecture - **Type:** GPT2 causal language model - **Parameters:** 44.9M - **Context Size:** 512 tokens - **Tensor Type:** FP32 ### Compute Infrastructure - **Hardware:** 1x Intel Core Ultra 7 155H - **Training Framework:** Transformers Trainer API ## Environmental Impact - **Carbon Emissions:** **0 kgCO2eq** (Thanks to photovoltaic system) ## Citation **BibTeX:** ```bibtex @software{benallal2024smollmcorpus, author = {Ben Allal, Loubna and Lozhkov, Anton and Penedo, Guilherme and Wolf, Thomas and von Werra, Leandro}, title = {SmolLM-Corpus}, month = July, year = 2024, url = {https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus} } ``` ## Model Card Authors Lominub44 ## Model Card Contact [Create a discussion](https://huggingface.co/Lominub44/PicoNosensoX-v1/discussions/new)