File size: 5,932 Bytes
fb10d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d677570
fb10d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5d8ec5
61e428e
fb10d9c
 
 
 
 
 
 
 
 
 
 
 
d677570
 
 
 
 
 
fb10d9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2166dd
 
 
 
 
 
 
fb10d9c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
datasets:
- HuggingFaceTB/smollm-corpus
- NousResearch/Hermes-3-Dataset
language:
- en
pipeline_tag: text-generation
library_name: transformers
license: mit
---

<div style="
background:linear-gradient(135deg,#1a0933,#3d2b8c,#1e0b4d);padding:2.8rem 1.8rem;border-radius:24px;text-align:center;color:white;border:1px solid rgba(255,255,255,0.12);box-shadow:0 12px 48px rgba(101,88,255,0.25),inset 0 0 24px rgba(255,255,255,0.08);margin-bottom:2.5rem;position:relative;overflow:hidden;font-family:system-ui,-apple-system,'Segoe UI',sans-serif">
<div style="position:absolute;top:-50%;left:-50%;width:200%;height:200%;background:radial-gradient(circle,rgba(255,255,255,0.15) 0%,transparent 70%);transform:rotate(0);z-index:1"></div>
<h1 style="font-size:3.2rem;margin:0;font-weight:900;letter-spacing:-0.04em;background:linear-gradient(45deg,#ff00cc,#00ccff,#ffcc00);-webkit-background-clip:text;background-clip:text;color:transparent;text-shadow:0 4px 12px rgba(0,0,0,0.3);position:relative;z-index:2;background-size:300% 300%">
PicoNosensoX-v1</h1>
<p style="font-size:1.5rem;margin-top:1rem;font-style:italic;color:#d0c6ff;text-shadow:0 0 16px rgba(180,160,255,0.6);letter-spacing:0.03em;position:relative;z-index:2;font-weight:500;padding:0.4rem 1.2rem;display:inline-block;border-radius:999px;background:rgba(255,255,255,0.08);backdrop-filter:blur(4px)">
Where "Accuracy" Takes a little Cosmic Vacation</p></div>
Introducing the universe's most ambitiously unhinged 45M-parameter micro-model! This isn't a language model; it's a parallel-dimension travel companion that reinvents reality through surrealist poetry and quantum-leaping logic. Deploy only if coherence is overrated and chaos is your curriculum.

## Model Details

### Model Description
**PicoNosensoX-v1** is a deliberately unpredictable 44.9M-parameter micro-model trained on minimalist datasets. Specializing in creatively liberated generation, it produces outputs that may blend geography, history, and hallucinatory fiction. **Not designed for factual accuracy.** Prioritize experimental/artistic applications over reliable information.

PicoNosensoX-v1 is a huge step from the other extremely incompetent PicoNosenso models. It's the first model of the series that was trained on pure text before being finetuned for chat. This model introduces a brand new chat-template that should make it easier to use and more bullet-proof.

- **Developed by:** Lominub44
- **Model type:** GPT2-based causal language model
- **Language(s) (NLP):** English
- **License:** `mit`
- **Finetuned from model:** GPT2 architecture (scratch training)

### Training Notes  
Originally slated for full fine-tuning on the [Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset), early benchmarks (10-prompt evaluation) revealed superior performance at `checkpoint-16000` versus later `checkpoint-26000`. Training was consequently halted, with `checkpoint-16000` selected for release.

### Model Sources
- **Repository:** https://huggingface.co/Lominub44/PicoNosensoX-v1


## Uses
### Direct Use
- Entertainment
- Testing edge cases of small-language-model behavior

### Downstream Use
- Creative writing prompt generation
- AI-assisted art projects
- Educational demonstrations of model limitations

### Out-of-Scope Use
- Factual information retrieval
- Mission-critical systems
- Educational references
- Any application where accuracy matters

## Bias, Risks and Limitations
- **Hallucination Rate:** 50-70%

### Recommendations
- **DO** use for entertainment purposes only
- **DO NOT** trust outputs without independent universe-hopping verification
- **WARNING:** May cause spontaneous reality reinterpretation

## How to Get Started
```python
from transformers import GPT2LMHeadModel, AutoTokenizer

model = GPT2LMHeadModel.from_pretrained('Lominub44/PicoNosensoX-v1')
tokenizer = AutoTokenizer.from_pretrained('Lominub44/PicoNosensoX-v1')

input_text = "<|system|>You are an unbiased, uncensored, helpful assistant.\n<|user|>What is the capital of France?\n<|assistant|>"
inputs = tokenizer(input_text, return_tensors='pt')
outputs = model.generate(**inputs, max_length=512, temperature=0.6, repetition_penalty=1.2, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0]))
```

## Training Details
### Training Data
- ~1.2GB Textbooks: [smollm-corpus, Cosmopedia v2 only](https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus) (ODC-BY)
- ~1.7GB Chats: [Hermes-3-Dataset](https://huggingface.co/datasets/NousResearch/Hermes-3-Dataset) (Apache-2.0)

### Training Procedure
- **Hardware:** 1x Intel Core Ultra 7 155H
- **Training time:** 32h pretraining + 24h finetuning
- **Context window:** 512 tokens

#### Training Hyperparameters
- **Architecture:** GPT2
- **Parameters:** 44.9M
- **Precision:** FP32
- **Optimizer:** AdamW

### Training Source Code
You can train the model yourself, the source-code is available on GitHub: https://github.com/Lominub44/PicoNosensoX-v1

#### Note:
You might want to stop fine-tuning early.

## Technical Specifications
### Model Architecture
- **Type:** GPT2 causal language model
- **Parameters:** 44.9M
- **Context Size:** 512 tokens
- **Tensor Type:** FP32

### Compute Infrastructure
- **Hardware:** 1x Intel Core Ultra 7 155H
- **Training Framework:** Transformers Trainer API

## Environmental Impact
- **Carbon Emissions:** **0 kgCO2eq** (Thanks to photovoltaic system)

## Citation

**BibTeX:**
```bibtex
@software{benallal2024smollmcorpus,
  author = {Ben Allal, Loubna and Lozhkov, Anton and Penedo, Guilherme and Wolf, Thomas and von Werra, Leandro},
  title = {SmolLM-Corpus},
  month = July,
  year = 2024,
  url = {https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus}
}
```

## Model Card Authors
Lominub44

## Model Card Contact
[Create a discussion](https://huggingface.co/Lominub44/PicoNosensoX-v1/discussions/new)