File size: 2,806 Bytes
98b618e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: damage_trigger_effect_2023-10-06_11_33
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# damage_trigger_effect_2023-10-06_11_33

This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3069
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9128

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log        | 1.0   | 28   | 0.3496          | 0.0       | 0.0    | 0.0 | 0.9016   |
| No log        | 2.0   | 56   | 0.2948          | 0.0       | 0.0    | 0.0 | 0.9147   |
| No log        | 3.0   | 84   | 0.2590          | 0.0       | 0.0    | 0.0 | 0.9171   |
| No log        | 4.0   | 112  | 0.2689          | 0.0       | 0.0    | 0.0 | 0.9078   |
| No log        | 5.0   | 140  | 0.2561          | 0.0       | 0.0    | 0.0 | 0.9101   |
| No log        | 6.0   | 168  | 0.2447          | 0.0       | 0.0    | 0.0 | 0.9155   |
| No log        | 7.0   | 196  | 0.2621          | 0.0       | 0.0    | 0.0 | 0.9085   |
| No log        | 8.0   | 224  | 0.2734          | 0.0       | 0.0    | 0.0 | 0.9143   |
| No log        | 9.0   | 252  | 0.2806          | 0.0       | 0.0    | 0.0 | 0.9066   |
| No log        | 10.0  | 280  | 0.2954          | 0.0       | 0.0    | 0.0 | 0.9105   |
| No log        | 11.0  | 308  | 0.2929          | 0.0       | 0.0    | 0.0 | 0.9128   |
| No log        | 12.0  | 336  | 0.2936          | 0.0       | 0.0    | 0.0 | 0.9116   |
| No log        | 13.0  | 364  | 0.2948          | 0.0       | 0.0    | 0.0 | 0.9132   |
| No log        | 14.0  | 392  | 0.2973          | 0.0       | 0.0    | 0.0 | 0.9151   |
| No log        | 15.0  | 420  | 0.3069          | 0.0       | 0.0    | 0.0 | 0.9128   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0