vrashad commited on
Commit
dad441e
·
verified ·
1 Parent(s): d3a0401

Upload fine-tuned AZ-EN sentence embedding model (checkpoint-388311)

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:8283932
8
+ - loss:MSELoss
9
+ base_model: sentence-transformers/all-MiniLM-L6-v2
10
+ widget:
11
+ - source_sentence: Through the Southern Gas Corridor pipeline, gas supply to the European
12
+ Union increased from 8.1 billion cubic meters in 2021 to 11.4 billion cubic meters
13
+ in 2022.
14
+ sentences:
15
+ - After this meeting, the monthly amount collected from prosecutors and investigators
16
+ for the building was increased from 460 manats to 480 manats.
17
+ - Məlik-Aslanov 1919-cu il fevralın 18-dək həm də müvəqqəti olaraq ticarət, sənaye
18
+ və ərzaq nazirinin səlahiyyətlərini də yerinə yetirmişdi.
19
+ - Üçüncü mərhələdə isə Şura hər bir layihə üzrə təqdim olunmuş ekspert rəyini, QHT-nin
20
+ Şuranın maliyyə dəstəyi hesabına əvvəlki illərdə həyata keçirdiyi layihənin icra
21
+ vəziyyətini və layihə idarəetmə təcrübəsini nəzərə alaraq yekun qərar qəbul edir.
22
+ - source_sentence: '“Azərbaycan Uşaqlar Birliyi”nin sədri Kəmalə Ağazadə isə məsələnin
23
+ Elinanın deyil, digər şəxslərin üzərində fokuslanmasının doğru olmadığını bildirdi:
24
+ “Elinanın intiharı ilə bağlı məsələ bu gün də sosial şəbəkələrdə xeyli müzakirə
25
+ edilir, müxtəlif fikirlər bildirilir.'
26
+ sentences:
27
+ - 1952-ci ilin aprelindən başlayaraq, "Azərbaycan Kültür Dərnəyi" tərəfindən Ankarada
28
+ aylıq "Azərbaycan" jurnalı nəşr olunur.
29
+ - G. Məmmədovanın fikrincə abidənin konstruktiv həllinin analizi, kvadrat təməldən
30
+ dairəvi dacili və səkkizbucaqlı xarici barabana keçidin yelkənlərlə təmin edilməsinə
31
+ əsasən kilsəni təxminən VII-VIII əsrlərə aid etmək mümkündür.
32
+ - However, a signature campaign was conducted in the country to hold a referendum
33
+ on extending Nursultan Nazarbayev’s term, and nearly 5 million signatures were
34
+ collected.
35
+ - source_sentence: Thus, we preserve our history, traditions, and culture, and we
36
+ do a lot to support each other.
37
+ sentences:
38
+ - Belə ki, ara yoldan Bakıxanov küçəsinə çıxan “Mercedes”in sürücü Özal Quliyevin
39
+ üstünlük nişanının tələbinə əməl etməməsi qəza ilə nəticələnib.
40
+ - Bundan başqa, onun sözlərinə görə, OPEK+ razılaşması neft bazarının məhsul artıqlığından
41
+ qurtulmasına kömək edib.
42
+ - Onun fikrincə, İranın Azərbaycan vilayətləri də “Cənubi Azərbaycan” olmalıdır.
43
+ - source_sentence: It's true that, although Shahriyar, who is in the top four alongside
44
+ Aronyan in the rankings, couldn't win this match.
45
+ sentences:
46
+ - After spending a year in exile, his father Sultan Abdul Hamid sent him to Istanbul
47
+ along with his sisters Ayşe Sultan and Şadiye Sultan, and asked his brother Sultan
48
+ Reşad to arrange their marriages.
49
+ - Bu, ilk dəfədir ki ABŞ hərbi qüvvələri Rusiyanın keçən ay gizli olaraq raketlər
50
+ yerləşdirilməsini ictimai şəkildə təsdiq edir.
51
+ - He noted that the Supreme Court held seven sessions, thoroughly reviewed the lower
52
+ court’s investigation, and upheld the death sentence.
53
+ - source_sentence: At the same time, it is no secret that Washington’s strategic plans
54
+ for the Middle East include changing the current Iranian regime, which opposes
55
+ Western interests in the region.
56
+ sentences:
57
+ - Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov
58
+ isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına
59
+ yerləşdirilib.
60
+ - In addition, Turkey was demanding the territory that included the districts of
61
+ Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.
62
+ - Bu vəziyyət kilsə meydanını düzəltdiyindən və qolları bərabər uzunluqda olan xaç
63
+ planı aydınlaşmadığı üçün bu plan növü qapalı yunan xaçı planı adlandırılır.
64
+ pipeline_tag: sentence-similarity
65
+ library_name: sentence-transformers
66
+ ---
67
+
68
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
71
+
72
+ ## Model Details
73
+
74
+ ### Model Description
75
+ - **Model Type:** Sentence Transformer
76
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
77
+ - **Maximum Sequence Length:** 512 tokens
78
+ - **Output Dimensionality:** 384 dimensions
79
+ - **Similarity Function:** Cosine Similarity
80
+ <!-- - **Training Dataset:** Unknown -->
81
+ <!-- - **Language:** Unknown -->
82
+ <!-- - **License:** Unknown -->
83
+
84
+ ### Model Sources
85
+
86
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
87
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
88
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
89
+
90
+ ### Full Model Architecture
91
+
92
+ ```
93
+ SentenceTransformer(
94
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
95
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
96
+ (2): Normalize()
97
+ )
98
+ ```
99
+
100
+ ## Usage
101
+
102
+ ### Direct Usage (Sentence Transformers)
103
+
104
+ First install the Sentence Transformers library:
105
+
106
+ ```bash
107
+ pip install -U sentence-transformers
108
+ ```
109
+
110
+ Then you can load this model and run inference.
111
+ ```python
112
+ from sentence_transformers import SentenceTransformer
113
+
114
+ # Download from the 🤗 Hub
115
+ model = SentenceTransformer("sentence_transformers_model_id")
116
+ # Run inference
117
+ sentences = [
118
+ 'At the same time, it is no secret that Washington’s strategic plans for the Middle East include changing the current Iranian regime, which opposes Western interests in the region.',
119
+ 'In addition, Turkey was demanding the territory that included the districts of Akhaltsikhe, Akhalkalaki, Alexandropol (Gyumri), Surmali, and Nakhchivan.',
120
+ 'Sürücü Ə.Nəzərovla maşındakı digər sərnişinlər Rahim Mahmudov və Anar Bayramov isə müxtəlif dərəcəli bədən xəsarətləri ilə Lənkəran Mərkəzi Rayon Xəstəxanasına yerləşdirilib.',
121
+ ]
122
+ embeddings = model.encode(sentences)
123
+ print(embeddings.shape)
124
+ # [3, 384]
125
+
126
+ # Get the similarity scores for the embeddings
127
+ similarities = model.similarity(embeddings, embeddings)
128
+ print(similarities.shape)
129
+ # [3, 3]
130
+ ```
131
+
132
+ <!--
133
+ ### Direct Usage (Transformers)
134
+
135
+ <details><summary>Click to see the direct usage in Transformers</summary>
136
+
137
+ </details>
138
+ -->
139
+
140
+ <!--
141
+ ### Downstream Usage (Sentence Transformers)
142
+
143
+ You can finetune this model on your own dataset.
144
+
145
+ <details><summary>Click to expand</summary>
146
+
147
+ </details>
148
+ -->
149
+
150
+ <!--
151
+ ### Out-of-Scope Use
152
+
153
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
154
+ -->
155
+
156
+ <!--
157
+ ## Bias, Risks and Limitations
158
+
159
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
160
+ -->
161
+
162
+ <!--
163
+ ### Recommendations
164
+
165
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
166
+ -->
167
+
168
+ ## Training Details
169
+
170
+ ### Training Dataset
171
+
172
+ #### Unnamed Dataset
173
+
174
+ * Size: 8,283,932 training samples
175
+ * Columns: <code>sentence_0</code> and <code>label</code>
176
+ * Approximate statistics based on the first 1000 samples:
177
+ | | sentence_0 | label |
178
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------|
179
+ | type | string | list |
180
+ | details | <ul><li>min: 4 tokens</li><li>mean: 29.8 tokens</li><li>max: 89 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
181
+ * Samples:
182
+ | sentence_0 | label |
183
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
184
+ | <code>“Biz “Hizbullah”a axan maliyyə dəstəyini dayandırmaq istəyirik və bu məqsədlə ABŞ hökuməti tutarlı məlumat qarşılığında 10 milyon dollaradək mükafat verməklə yanaşı digər tədbirlər də görəcək”, - Evanoff belə deyib.</code> | <code>[-0.022054675966501236, 0.0932646170258522, -0.01854480803012848, -0.025271562859416008, 0.028432276099920273, ...]</code> |
185
+ | <code>Bu dövləti bu gün müxalifətdə olanlar quranda Əli Həsənovun harada nə işlə məşğul olduğu bəlli deyildi.</code> | <code>[-0.012831359170377254, 0.022371841594576836, -0.0271938294172287, 0.09667906910181046, 0.009270057082176208, ...]</code> |
186
+ | <code>APA-nın “Hürriyet” qəzetinə istinadən verdiyi məlumata görə, ABŞ Hərbi Hava Qüvvələrinn Komandanlığı ən son 1991-ci ildə Körfəz savaşında istifadə edilmiş B-52 təyyarələrinin Qətərə göndərildiyini açıqlayıb.</code> | <code>[-0.01321476697921753, 0.06281372904777527, 0.005026344675570726, -0.004140781704336405, 0.04239720478653908, ...]</code> |
187
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
188
+
189
+ ### Training Hyperparameters
190
+ #### Non-Default Hyperparameters
191
+
192
+ - `per_device_train_batch_size`: 64
193
+ - `per_device_eval_batch_size`: 64
194
+ - `multi_dataset_batch_sampler`: round_robin
195
+
196
+ #### All Hyperparameters
197
+ <details><summary>Click to expand</summary>
198
+
199
+ - `overwrite_output_dir`: False
200
+ - `do_predict`: False
201
+ - `eval_strategy`: no
202
+ - `prediction_loss_only`: True
203
+ - `per_device_train_batch_size`: 64
204
+ - `per_device_eval_batch_size`: 64
205
+ - `per_gpu_train_batch_size`: None
206
+ - `per_gpu_eval_batch_size`: None
207
+ - `gradient_accumulation_steps`: 1
208
+ - `eval_accumulation_steps`: None
209
+ - `torch_empty_cache_steps`: None
210
+ - `learning_rate`: 5e-05
211
+ - `weight_decay`: 0.0
212
+ - `adam_beta1`: 0.9
213
+ - `adam_beta2`: 0.999
214
+ - `adam_epsilon`: 1e-08
215
+ - `max_grad_norm`: 1
216
+ - `num_train_epochs`: 3
217
+ - `max_steps`: -1
218
+ - `lr_scheduler_type`: linear
219
+ - `lr_scheduler_kwargs`: {}
220
+ - `warmup_ratio`: 0.0
221
+ - `warmup_steps`: 0
222
+ - `log_level`: passive
223
+ - `log_level_replica`: warning
224
+ - `log_on_each_node`: True
225
+ - `logging_nan_inf_filter`: True
226
+ - `save_safetensors`: True
227
+ - `save_on_each_node`: False
228
+ - `save_only_model`: False
229
+ - `restore_callback_states_from_checkpoint`: False
230
+ - `no_cuda`: False
231
+ - `use_cpu`: False
232
+ - `use_mps_device`: False
233
+ - `seed`: 42
234
+ - `data_seed`: None
235
+ - `jit_mode_eval`: False
236
+ - `use_ipex`: False
237
+ - `bf16`: False
238
+ - `fp16`: False
239
+ - `fp16_opt_level`: O1
240
+ - `half_precision_backend`: auto
241
+ - `bf16_full_eval`: False
242
+ - `fp16_full_eval`: False
243
+ - `tf32`: None
244
+ - `local_rank`: 0
245
+ - `ddp_backend`: None
246
+ - `tpu_num_cores`: None
247
+ - `tpu_metrics_debug`: False
248
+ - `debug`: []
249
+ - `dataloader_drop_last`: False
250
+ - `dataloader_num_workers`: 0
251
+ - `dataloader_prefetch_factor`: None
252
+ - `past_index`: -1
253
+ - `disable_tqdm`: False
254
+ - `remove_unused_columns`: True
255
+ - `label_names`: None
256
+ - `load_best_model_at_end`: False
257
+ - `ignore_data_skip`: False
258
+ - `fsdp`: []
259
+ - `fsdp_min_num_params`: 0
260
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
261
+ - `fsdp_transformer_layer_cls_to_wrap`: None
262
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
263
+ - `deepspeed`: None
264
+ - `label_smoothing_factor`: 0.0
265
+ - `optim`: adamw_torch
266
+ - `optim_args`: None
267
+ - `adafactor`: False
268
+ - `group_by_length`: False
269
+ - `length_column_name`: length
270
+ - `ddp_find_unused_parameters`: None
271
+ - `ddp_bucket_cap_mb`: None
272
+ - `ddp_broadcast_buffers`: False
273
+ - `dataloader_pin_memory`: True
274
+ - `dataloader_persistent_workers`: False
275
+ - `skip_memory_metrics`: True
276
+ - `use_legacy_prediction_loop`: False
277
+ - `push_to_hub`: False
278
+ - `resume_from_checkpoint`: None
279
+ - `hub_model_id`: None
280
+ - `hub_strategy`: every_save
281
+ - `hub_private_repo`: None
282
+ - `hub_always_push`: False
283
+ - `gradient_checkpointing`: False
284
+ - `gradient_checkpointing_kwargs`: None
285
+ - `include_inputs_for_metrics`: False
286
+ - `include_for_metrics`: []
287
+ - `eval_do_concat_batches`: True
288
+ - `fp16_backend`: auto
289
+ - `push_to_hub_model_id`: None
290
+ - `push_to_hub_organization`: None
291
+ - `mp_parameters`:
292
+ - `auto_find_batch_size`: False
293
+ - `full_determinism`: False
294
+ - `torchdynamo`: None
295
+ - `ray_scope`: last
296
+ - `ddp_timeout`: 1800
297
+ - `torch_compile`: False
298
+ - `torch_compile_backend`: None
299
+ - `torch_compile_mode`: None
300
+ - `include_tokens_per_second`: False
301
+ - `include_num_input_tokens_seen`: False
302
+ - `neftune_noise_alpha`: None
303
+ - `optim_target_modules`: None
304
+ - `batch_eval_metrics`: False
305
+ - `eval_on_start`: False
306
+ - `use_liger_kernel`: False
307
+ - `eval_use_gather_object`: False
308
+ - `average_tokens_across_devices`: False
309
+ - `prompts`: None
310
+ - `batch_sampler`: batch_sampler
311
+ - `multi_dataset_batch_sampler`: round_robin
312
+
313
+ </details>
314
+
315
+ ### Training Logs
316
+ <details><summary>Click to expand</summary>
317
+
318
+ | Epoch | Step | Training Loss |
319
+ |:------:|:------:|:-------------:|
320
+ | 0.0039 | 500 | 0.0035 |
321
+ | 0.0077 | 1000 | 0.0024 |
322
+ | 0.0116 | 1500 | 0.0022 |
323
+ | 0.0155 | 2000 | 0.002 |
324
+ | 0.0193 | 2500 | 0.0019 |
325
+ | 0.0232 | 3000 | 0.0019 |
326
+ | 0.0270 | 3500 | 0.0018 |
327
+ | 0.0309 | 4000 | 0.0018 |
328
+ | 0.0348 | 4500 | 0.0017 |
329
+ | 0.0386 | 5000 | 0.0017 |
330
+ | 0.0425 | 5500 | 0.0016 |
331
+ | 0.0464 | 6000 | 0.0016 |
332
+ | 0.0502 | 6500 | 0.0016 |
333
+ | 0.0541 | 7000 | 0.0016 |
334
+ | 0.0579 | 7500 | 0.0015 |
335
+ | 0.0618 | 8000 | 0.0015 |
336
+ | 0.0657 | 8500 | 0.0015 |
337
+ | 0.0695 | 9000 | 0.0014 |
338
+ | 0.0734 | 9500 | 0.0014 |
339
+ | 0.0773 | 10000 | 0.0014 |
340
+ | 0.0811 | 10500 | 0.0013 |
341
+ | 0.0850 | 11000 | 0.0013 |
342
+ | 0.0888 | 11500 | 0.0013 |
343
+ | 0.0927 | 12000 | 0.0012 |
344
+ | 0.0966 | 12500 | 0.0012 |
345
+ | 0.1004 | 13000 | 0.0012 |
346
+ | 0.1043 | 13500 | 0.0012 |
347
+ | 0.1082 | 14000 | 0.0011 |
348
+ | 0.1120 | 14500 | 0.0011 |
349
+ | 0.1159 | 15000 | 0.0011 |
350
+ | 0.1197 | 15500 | 0.0011 |
351
+ | 0.1236 | 16000 | 0.0011 |
352
+ | 0.1275 | 16500 | 0.001 |
353
+ | 0.1313 | 17000 | 0.001 |
354
+ | 0.1352 | 17500 | 0.001 |
355
+ | 0.1391 | 18000 | 0.001 |
356
+ | 0.1429 | 18500 | 0.001 |
357
+ | 0.1468 | 19000 | 0.0009 |
358
+ | 0.1507 | 19500 | 0.0009 |
359
+ | 0.1545 | 20000 | 0.0009 |
360
+ | 0.1584 | 20500 | 0.0009 |
361
+ | 0.1622 | 21000 | 0.0009 |
362
+ | 0.1661 | 21500 | 0.0008 |
363
+ | 0.1700 | 22000 | 0.0008 |
364
+ | 0.1738 | 22500 | 0.0008 |
365
+ | 0.1777 | 23000 | 0.0008 |
366
+ | 0.1816 | 23500 | 0.0008 |
367
+ | 0.1854 | 24000 | 0.0008 |
368
+ | 0.1893 | 24500 | 0.0008 |
369
+ | 0.1931 | 25000 | 0.0008 |
370
+ | 0.1970 | 25500 | 0.0007 |
371
+ | 0.2009 | 26000 | 0.0007 |
372
+ | 0.2047 | 26500 | 0.0007 |
373
+ | 0.2086 | 27000 | 0.0007 |
374
+ | 0.2125 | 27500 | 0.0007 |
375
+ | 0.2163 | 28000 | 0.0007 |
376
+ | 0.2202 | 28500 | 0.0007 |
377
+ | 0.2240 | 29000 | 0.0007 |
378
+ | 0.2279 | 29500 | 0.0007 |
379
+ | 0.2318 | 30000 | 0.0007 |
380
+ | 0.2356 | 30500 | 0.0007 |
381
+ | 0.2395 | 31000 | 0.0007 |
382
+ | 0.2434 | 31500 | 0.0006 |
383
+ | 0.2472 | 32000 | 0.0006 |
384
+ | 0.2511 | 32500 | 0.0006 |
385
+ | 0.2550 | 33000 | 0.0006 |
386
+ | 0.2588 | 33500 | 0.0006 |
387
+ | 0.2627 | 34000 | 0.0006 |
388
+ | 0.2665 | 34500 | 0.0006 |
389
+ | 0.2704 | 35000 | 0.0006 |
390
+ | 0.2743 | 35500 | 0.0006 |
391
+ | 0.2781 | 36000 | 0.0006 |
392
+ | 0.2820 | 36500 | 0.0006 |
393
+ | 0.2859 | 37000 | 0.0006 |
394
+ | 0.2897 | 37500 | 0.0006 |
395
+ | 0.2936 | 38000 | 0.0006 |
396
+ | 0.2974 | 38500 | 0.0006 |
397
+ | 0.3013 | 39000 | 0.0006 |
398
+ | 0.3052 | 39500 | 0.0006 |
399
+ | 0.3090 | 40000 | 0.0006 |
400
+ | 0.3129 | 40500 | 0.0006 |
401
+ | 0.3168 | 41000 | 0.0006 |
402
+ | 0.3206 | 41500 | 0.0005 |
403
+ | 0.3245 | 42000 | 0.0005 |
404
+ | 0.3283 | 42500 | 0.0005 |
405
+ | 0.3322 | 43000 | 0.0005 |
406
+ | 0.3361 | 43500 | 0.0005 |
407
+ | 0.3399 | 44000 | 0.0005 |
408
+ | 0.3438 | 44500 | 0.0005 |
409
+ | 0.3477 | 45000 | 0.0005 |
410
+ | 0.3515 | 45500 | 0.0005 |
411
+ | 0.3554 | 46000 | 0.0005 |
412
+ | 0.3592 | 46500 | 0.0005 |
413
+ | 0.3631 | 47000 | 0.0005 |
414
+ | 0.3670 | 47500 | 0.0005 |
415
+ | 0.3708 | 48000 | 0.0005 |
416
+ | 0.3747 | 48500 | 0.0005 |
417
+ | 0.3786 | 49000 | 0.0005 |
418
+ | 0.3824 | 49500 | 0.0005 |
419
+ | 0.3863 | 50000 | 0.0005 |
420
+ | 0.3902 | 50500 | 0.0005 |
421
+ | 0.3940 | 51000 | 0.0005 |
422
+ | 0.3979 | 51500 | 0.0005 |
423
+ | 0.4017 | 52000 | 0.0005 |
424
+ | 0.4056 | 52500 | 0.0005 |
425
+ | 0.4095 | 53000 | 0.0005 |
426
+ | 0.4133 | 53500 | 0.0005 |
427
+ | 0.4172 | 54000 | 0.0005 |
428
+ | 0.4211 | 54500 | 0.0005 |
429
+ | 0.4249 | 55000 | 0.0005 |
430
+ | 0.4288 | 55500 | 0.0005 |
431
+ | 0.4326 | 56000 | 0.0005 |
432
+ | 0.4365 | 56500 | 0.0005 |
433
+ | 0.4404 | 57000 | 0.0005 |
434
+ | 0.4442 | 57500 | 0.0005 |
435
+ | 0.4481 | 58000 | 0.0005 |
436
+ | 0.4520 | 58500 | 0.0005 |
437
+ | 0.4558 | 59000 | 0.0005 |
438
+ | 0.4597 | 59500 | 0.0005 |
439
+ | 0.4635 | 60000 | 0.0005 |
440
+ | 0.4674 | 60500 | 0.0005 |
441
+ | 0.4713 | 61000 | 0.0005 |
442
+ | 0.4751 | 61500 | 0.0005 |
443
+ | 0.4790 | 62000 | 0.0005 |
444
+ | 0.4829 | 62500 | 0.0005 |
445
+ | 0.4867 | 63000 | 0.0005 |
446
+ | 0.4906 | 63500 | 0.0005 |
447
+ | 0.4944 | 64000 | 0.0005 |
448
+ | 0.4983 | 64500 | 0.0005 |
449
+ | 0.5022 | 65000 | 0.0005 |
450
+ | 0.5060 | 65500 | 0.0004 |
451
+ | 0.5099 | 66000 | 0.0004 |
452
+ | 0.5138 | 66500 | 0.0004 |
453
+ | 0.5176 | 67000 | 0.0004 |
454
+ | 0.5215 | 67500 | 0.0004 |
455
+ | 0.5254 | 68000 | 0.0004 |
456
+ | 0.5292 | 68500 | 0.0004 |
457
+ | 0.5331 | 69000 | 0.0004 |
458
+ | 0.5369 | 69500 | 0.0004 |
459
+ | 0.5408 | 70000 | 0.0004 |
460
+ | 0.5447 | 70500 | 0.0004 |
461
+ | 0.5485 | 71000 | 0.0004 |
462
+ | 0.5524 | 71500 | 0.0004 |
463
+ | 0.5563 | 72000 | 0.0004 |
464
+ | 0.5601 | 72500 | 0.0004 |
465
+ | 0.5640 | 73000 | 0.0004 |
466
+ | 0.5678 | 73500 | 0.0004 |
467
+ | 0.5717 | 74000 | 0.0004 |
468
+ | 0.5756 | 74500 | 0.0004 |
469
+ | 0.5794 | 75000 | 0.0004 |
470
+ | 0.5833 | 75500 | 0.0004 |
471
+ | 0.5872 | 76000 | 0.0004 |
472
+ | 0.5910 | 76500 | 0.0004 |
473
+ | 0.5949 | 77000 | 0.0004 |
474
+ | 0.5987 | 77500 | 0.0004 |
475
+ | 0.6026 | 78000 | 0.0004 |
476
+ | 0.6065 | 78500 | 0.0004 |
477
+ | 0.6103 | 79000 | 0.0004 |
478
+ | 0.6142 | 79500 | 0.0004 |
479
+ | 0.6181 | 80000 | 0.0004 |
480
+ | 0.6219 | 80500 | 0.0004 |
481
+ | 0.6258 | 81000 | 0.0004 |
482
+ | 0.6296 | 81500 | 0.0004 |
483
+ | 0.6335 | 82000 | 0.0004 |
484
+ | 0.6374 | 82500 | 0.0004 |
485
+ | 0.6412 | 83000 | 0.0004 |
486
+ | 0.6451 | 83500 | 0.0004 |
487
+ | 0.6490 | 84000 | 0.0004 |
488
+ | 0.6528 | 84500 | 0.0004 |
489
+ | 0.6567 | 85000 | 0.0004 |
490
+ | 0.6606 | 85500 | 0.0004 |
491
+ | 0.6644 | 86000 | 0.0004 |
492
+ | 0.6683 | 86500 | 0.0004 |
493
+ | 0.6721 | 87000 | 0.0004 |
494
+ | 0.6760 | 87500 | 0.0004 |
495
+ | 0.6799 | 88000 | 0.0004 |
496
+ | 0.6837 | 88500 | 0.0004 |
497
+ | 0.6876 | 89000 | 0.0004 |
498
+ | 0.6915 | 89500 | 0.0004 |
499
+ | 0.6953 | 90000 | 0.0004 |
500
+ | 0.6992 | 90500 | 0.0004 |
501
+ | 0.7030 | 91000 | 0.0004 |
502
+ | 0.7069 | 91500 | 0.0004 |
503
+ | 0.7108 | 92000 | 0.0004 |
504
+ | 0.7146 | 92500 | 0.0004 |
505
+ | 0.7185 | 93000 | 0.0004 |
506
+ | 0.7224 | 93500 | 0.0004 |
507
+ | 0.7262 | 94000 | 0.0004 |
508
+ | 0.7301 | 94500 | 0.0004 |
509
+ | 0.7339 | 95000 | 0.0004 |
510
+ | 0.7378 | 95500 | 0.0004 |
511
+ | 0.7417 | 96000 | 0.0004 |
512
+ | 0.7455 | 96500 | 0.0004 |
513
+ | 0.7494 | 97000 | 0.0004 |
514
+ | 0.7533 | 97500 | 0.0004 |
515
+ | 0.7571 | 98000 | 0.0004 |
516
+ | 0.7610 | 98500 | 0.0004 |
517
+ | 0.7649 | 99000 | 0.0004 |
518
+ | 0.7687 | 99500 | 0.0004 |
519
+ | 0.7726 | 100000 | 0.0004 |
520
+ | 0.7764 | 100500 | 0.0004 |
521
+ | 0.7803 | 101000 | 0.0004 |
522
+ | 0.7842 | 101500 | 0.0004 |
523
+ | 0.7880 | 102000 | 0.0004 |
524
+ | 0.7919 | 102500 | 0.0004 |
525
+ | 0.7958 | 103000 | 0.0004 |
526
+ | 0.7996 | 103500 | 0.0004 |
527
+ | 0.8035 | 104000 | 0.0004 |
528
+ | 0.8073 | 104500 | 0.0004 |
529
+ | 0.8112 | 105000 | 0.0004 |
530
+ | 0.8151 | 105500 | 0.0004 |
531
+ | 0.8189 | 106000 | 0.0004 |
532
+ | 0.8228 | 106500 | 0.0004 |
533
+ | 0.8267 | 107000 | 0.0004 |
534
+ | 0.8305 | 107500 | 0.0004 |
535
+ | 0.8344 | 108000 | 0.0004 |
536
+ | 0.8382 | 108500 | 0.0004 |
537
+ | 0.8421 | 109000 | 0.0004 |
538
+ | 0.8460 | 109500 | 0.0004 |
539
+ | 0.8498 | 110000 | 0.0004 |
540
+ | 0.8537 | 110500 | 0.0004 |
541
+ | 0.8576 | 111000 | 0.0004 |
542
+ | 0.8614 | 111500 | 0.0004 |
543
+ | 0.8653 | 112000 | 0.0004 |
544
+ | 0.8691 | 112500 | 0.0004 |
545
+ | 0.8730 | 113000 | 0.0004 |
546
+ | 0.8769 | 113500 | 0.0004 |
547
+ | 0.8807 | 114000 | 0.0004 |
548
+ | 0.8846 | 114500 | 0.0004 |
549
+ | 0.8885 | 115000 | 0.0004 |
550
+ | 0.8923 | 115500 | 0.0004 |
551
+ | 0.8962 | 116000 | 0.0004 |
552
+ | 0.9001 | 116500 | 0.0004 |
553
+ | 0.9039 | 117000 | 0.0004 |
554
+ | 0.9078 | 117500 | 0.0004 |
555
+ | 0.9116 | 118000 | 0.0004 |
556
+ | 0.9155 | 118500 | 0.0004 |
557
+ | 0.9194 | 119000 | 0.0004 |
558
+ | 0.9232 | 119500 | 0.0004 |
559
+ | 0.9271 | 120000 | 0.0004 |
560
+ | 0.9310 | 120500 | 0.0004 |
561
+ | 0.9348 | 121000 | 0.0004 |
562
+ | 0.9387 | 121500 | 0.0004 |
563
+ | 0.9425 | 122000 | 0.0004 |
564
+ | 0.9464 | 122500 | 0.0004 |
565
+ | 0.9503 | 123000 | 0.0004 |
566
+ | 0.9541 | 123500 | 0.0004 |
567
+ | 0.9580 | 124000 | 0.0004 |
568
+ | 0.9619 | 124500 | 0.0004 |
569
+ | 0.9657 | 125000 | 0.0004 |
570
+ | 0.9696 | 125500 | 0.0004 |
571
+ | 0.9734 | 126000 | 0.0004 |
572
+ | 0.9773 | 126500 | 0.0004 |
573
+ | 0.9812 | 127000 | 0.0004 |
574
+ | 0.9850 | 127500 | 0.0004 |
575
+ | 0.9889 | 128000 | 0.0004 |
576
+ | 0.9928 | 128500 | 0.0004 |
577
+ | 0.9966 | 129000 | 0.0004 |
578
+ | 1.0005 | 129500 | 0.0004 |
579
+ | 1.0043 | 130000 | 0.0004 |
580
+ | 1.0082 | 130500 | 0.0004 |
581
+ | 1.0121 | 131000 | 0.0004 |
582
+ | 1.0159 | 131500 | 0.0004 |
583
+ | 1.0198 | 132000 | 0.0004 |
584
+ | 1.0237 | 132500 | 0.0004 |
585
+ | 1.0275 | 133000 | 0.0004 |
586
+ | 1.0314 | 133500 | 0.0004 |
587
+ | 1.0353 | 134000 | 0.0004 |
588
+ | 1.0391 | 134500 | 0.0004 |
589
+ | 1.0430 | 135000 | 0.0004 |
590
+ | 1.0468 | 135500 | 0.0004 |
591
+ | 1.0507 | 136000 | 0.0004 |
592
+ | 1.0546 | 136500 | 0.0004 |
593
+ | 1.0584 | 137000 | 0.0004 |
594
+ | 1.0623 | 137500 | 0.0004 |
595
+ | 1.0662 | 138000 | 0.0004 |
596
+ | 1.0700 | 138500 | 0.0004 |
597
+ | 1.0739 | 139000 | 0.0004 |
598
+ | 1.0777 | 139500 | 0.0004 |
599
+ | 1.0816 | 140000 | 0.0004 |
600
+ | 1.0855 | 140500 | 0.0004 |
601
+ | 1.0893 | 141000 | 0.0004 |
602
+ | 1.0932 | 141500 | 0.0004 |
603
+ | 1.0971 | 142000 | 0.0004 |
604
+ | 1.1009 | 142500 | 0.0004 |
605
+ | 1.1048 | 143000 | 0.0004 |
606
+ | 1.1086 | 143500 | 0.0004 |
607
+ | 1.1125 | 144000 | 0.0004 |
608
+ | 1.1164 | 144500 | 0.0004 |
609
+ | 1.1202 | 145000 | 0.0004 |
610
+ | 1.1241 | 145500 | 0.0004 |
611
+ | 1.1280 | 146000 | 0.0004 |
612
+ | 1.1318 | 146500 | 0.0004 |
613
+ | 1.1357 | 147000 | 0.0004 |
614
+ | 1.1396 | 147500 | 0.0004 |
615
+ | 1.1434 | 148000 | 0.0004 |
616
+ | 1.1473 | 148500 | 0.0004 |
617
+ | 1.1511 | 149000 | 0.0004 |
618
+ | 1.1550 | 149500 | 0.0004 |
619
+ | 1.1589 | 150000 | 0.0004 |
620
+ | 1.1627 | 150500 | 0.0004 |
621
+ | 1.1666 | 151000 | 0.0004 |
622
+ | 1.1705 | 151500 | 0.0004 |
623
+ | 1.1743 | 152000 | 0.0004 |
624
+ | 1.1782 | 152500 | 0.0004 |
625
+ | 1.1820 | 153000 | 0.0004 |
626
+ | 1.1859 | 153500 | 0.0004 |
627
+ | 1.1898 | 154000 | 0.0004 |
628
+ | 1.1936 | 154500 | 0.0004 |
629
+ | 1.1975 | 155000 | 0.0004 |
630
+ | 1.2014 | 155500 | 0.0003 |
631
+ | 1.2052 | 156000 | 0.0003 |
632
+ | 1.2091 | 156500 | 0.0004 |
633
+ | 1.2129 | 157000 | 0.0003 |
634
+ | 1.2168 | 157500 | 0.0004 |
635
+ | 1.2207 | 158000 | 0.0003 |
636
+ | 1.2245 | 158500 | 0.0003 |
637
+ | 1.2284 | 159000 | 0.0003 |
638
+ | 1.2323 | 159500 | 0.0003 |
639
+ | 1.2361 | 160000 | 0.0003 |
640
+ | 1.2400 | 160500 | 0.0003 |
641
+ | 1.2438 | 161000 | 0.0003 |
642
+ | 1.2477 | 161500 | 0.0003 |
643
+ | 1.2516 | 162000 | 0.0003 |
644
+ | 1.2554 | 162500 | 0.0003 |
645
+ | 1.2593 | 163000 | 0.0003 |
646
+ | 1.2632 | 163500 | 0.0003 |
647
+ | 1.2670 | 164000 | 0.0003 |
648
+ | 1.2709 | 164500 | 0.0003 |
649
+ | 1.2748 | 165000 | 0.0003 |
650
+ | 1.2786 | 165500 | 0.0003 |
651
+ | 1.2825 | 166000 | 0.0003 |
652
+ | 1.2863 | 166500 | 0.0003 |
653
+ | 1.2902 | 167000 | 0.0003 |
654
+ | 1.2941 | 167500 | 0.0003 |
655
+ | 1.2979 | 168000 | 0.0003 |
656
+ | 1.3018 | 168500 | 0.0003 |
657
+ | 1.3057 | 169000 | 0.0003 |
658
+ | 1.3095 | 169500 | 0.0003 |
659
+ | 1.3134 | 170000 | 0.0003 |
660
+ | 1.3172 | 170500 | 0.0003 |
661
+ | 1.3211 | 171000 | 0.0003 |
662
+ | 1.3250 | 171500 | 0.0003 |
663
+ | 1.3288 | 172000 | 0.0003 |
664
+ | 1.3327 | 172500 | 0.0003 |
665
+ | 1.3366 | 173000 | 0.0003 |
666
+ | 1.3404 | 173500 | 0.0003 |
667
+ | 1.3443 | 174000 | 0.0003 |
668
+ | 1.3481 | 174500 | 0.0003 |
669
+ | 1.3520 | 175000 | 0.0003 |
670
+ | 1.3559 | 175500 | 0.0003 |
671
+ | 1.3597 | 176000 | 0.0003 |
672
+ | 1.3636 | 176500 | 0.0003 |
673
+ | 1.3675 | 177000 | 0.0003 |
674
+ | 1.3713 | 177500 | 0.0003 |
675
+ | 1.3752 | 178000 | 0.0003 |
676
+ | 1.3790 | 178500 | 0.0003 |
677
+ | 1.3829 | 179000 | 0.0003 |
678
+ | 1.3868 | 179500 | 0.0003 |
679
+ | 1.3906 | 180000 | 0.0003 |
680
+ | 1.3945 | 180500 | 0.0003 |
681
+ | 1.3984 | 181000 | 0.0003 |
682
+ | 1.4022 | 181500 | 0.0003 |
683
+ | 1.4061 | 182000 | 0.0003 |
684
+ | 1.4100 | 182500 | 0.0003 |
685
+ | 1.4138 | 183000 | 0.0003 |
686
+ | 1.4177 | 183500 | 0.0003 |
687
+ | 1.4215 | 184000 | 0.0003 |
688
+ | 1.4254 | 184500 | 0.0003 |
689
+ | 1.4293 | 185000 | 0.0003 |
690
+ | 1.4331 | 185500 | 0.0003 |
691
+ | 1.4370 | 186000 | 0.0003 |
692
+ | 1.4409 | 186500 | 0.0003 |
693
+ | 1.4447 | 187000 | 0.0003 |
694
+ | 1.4486 | 187500 | 0.0003 |
695
+ | 1.4524 | 188000 | 0.0003 |
696
+ | 1.4563 | 188500 | 0.0003 |
697
+ | 1.4602 | 189000 | 0.0003 |
698
+ | 1.4640 | 189500 | 0.0003 |
699
+ | 1.4679 | 190000 | 0.0003 |
700
+ | 1.4718 | 190500 | 0.0003 |
701
+ | 1.4756 | 191000 | 0.0003 |
702
+ | 1.4795 | 191500 | 0.0003 |
703
+ | 1.4833 | 192000 | 0.0003 |
704
+ | 1.4872 | 192500 | 0.0003 |
705
+ | 1.4911 | 193000 | 0.0003 |
706
+ | 1.4949 | 193500 | 0.0003 |
707
+ | 1.4988 | 194000 | 0.0003 |
708
+ | 1.5027 | 194500 | 0.0003 |
709
+ | 1.5065 | 195000 | 0.0003 |
710
+ | 1.5104 | 195500 | 0.0003 |
711
+ | 1.5143 | 196000 | 0.0003 |
712
+ | 1.5181 | 196500 | 0.0003 |
713
+ | 1.5220 | 197000 | 0.0003 |
714
+ | 1.5258 | 197500 | 0.0003 |
715
+ | 1.5297 | 198000 | 0.0003 |
716
+ | 1.5336 | 198500 | 0.0003 |
717
+ | 1.5374 | 199000 | 0.0003 |
718
+ | 1.5413 | 199500 | 0.0003 |
719
+ | 1.5452 | 200000 | 0.0003 |
720
+ | 1.5490 | 200500 | 0.0003 |
721
+ | 1.5529 | 201000 | 0.0003 |
722
+ | 1.5567 | 201500 | 0.0003 |
723
+ | 1.5606 | 202000 | 0.0003 |
724
+ | 1.5645 | 202500 | 0.0003 |
725
+ | 1.5683 | 203000 | 0.0003 |
726
+ | 1.5722 | 203500 | 0.0003 |
727
+ | 1.5761 | 204000 | 0.0003 |
728
+ | 1.5799 | 204500 | 0.0003 |
729
+ | 1.5838 | 205000 | 0.0003 |
730
+ | 1.5876 | 205500 | 0.0003 |
731
+ | 1.5915 | 206000 | 0.0003 |
732
+ | 1.5954 | 206500 | 0.0003 |
733
+ | 1.5992 | 207000 | 0.0003 |
734
+ | 1.6031 | 207500 | 0.0003 |
735
+ | 1.6070 | 208000 | 0.0003 |
736
+ | 1.6108 | 208500 | 0.0003 |
737
+ | 1.6147 | 209000 | 0.0003 |
738
+ | 1.6185 | 209500 | 0.0003 |
739
+ | 1.6224 | 210000 | 0.0003 |
740
+ | 1.6263 | 210500 | 0.0003 |
741
+ | 1.6301 | 211000 | 0.0003 |
742
+ | 1.6340 | 211500 | 0.0003 |
743
+ | 1.6379 | 212000 | 0.0003 |
744
+ | 1.6417 | 212500 | 0.0003 |
745
+ | 1.6456 | 213000 | 0.0003 |
746
+ | 1.6495 | 213500 | 0.0003 |
747
+ | 1.6533 | 214000 | 0.0003 |
748
+ | 1.6572 | 214500 | 0.0003 |
749
+ | 1.6610 | 215000 | 0.0003 |
750
+ | 1.6649 | 215500 | 0.0003 |
751
+ | 1.6688 | 216000 | 0.0003 |
752
+ | 1.6726 | 216500 | 0.0003 |
753
+ | 1.6765 | 217000 | 0.0003 |
754
+ | 1.6804 | 217500 | 0.0003 |
755
+ | 1.6842 | 218000 | 0.0003 |
756
+ | 1.6881 | 218500 | 0.0003 |
757
+ | 1.6919 | 219000 | 0.0003 |
758
+ | 1.6958 | 219500 | 0.0003 |
759
+ | 1.6997 | 220000 | 0.0003 |
760
+ | 1.7035 | 220500 | 0.0003 |
761
+ | 1.7074 | 221000 | 0.0003 |
762
+ | 1.7113 | 221500 | 0.0003 |
763
+ | 1.7151 | 222000 | 0.0003 |
764
+ | 1.7190 | 222500 | 0.0003 |
765
+ | 1.7228 | 223000 | 0.0003 |
766
+ | 1.7267 | 223500 | 0.0003 |
767
+ | 1.7306 | 224000 | 0.0003 |
768
+ | 1.7344 | 224500 | 0.0003 |
769
+ | 1.7383 | 225000 | 0.0003 |
770
+ | 1.7422 | 225500 | 0.0003 |
771
+ | 1.7460 | 226000 | 0.0003 |
772
+ | 1.7499 | 226500 | 0.0003 |
773
+ | 1.7537 | 227000 | 0.0003 |
774
+ | 1.7576 | 227500 | 0.0003 |
775
+ | 1.7615 | 228000 | 0.0003 |
776
+ | 1.7653 | 228500 | 0.0003 |
777
+ | 1.7692 | 229000 | 0.0003 |
778
+ | 1.7731 | 229500 | 0.0003 |
779
+ | 1.7769 | 230000 | 0.0003 |
780
+ | 1.7808 | 230500 | 0.0003 |
781
+ | 1.7847 | 231000 | 0.0003 |
782
+ | 1.7885 | 231500 | 0.0003 |
783
+ | 1.7924 | 232000 | 0.0003 |
784
+ | 1.7962 | 232500 | 0.0003 |
785
+ | 1.8001 | 233000 | 0.0003 |
786
+ | 1.8040 | 233500 | 0.0003 |
787
+ | 1.8078 | 234000 | 0.0003 |
788
+ | 1.8117 | 234500 | 0.0003 |
789
+ | 1.8156 | 235000 | 0.0003 |
790
+ | 1.8194 | 235500 | 0.0003 |
791
+ | 1.8233 | 236000 | 0.0003 |
792
+ | 1.8271 | 236500 | 0.0003 |
793
+ | 1.8310 | 237000 | 0.0003 |
794
+ | 1.8349 | 237500 | 0.0003 |
795
+ | 1.8387 | 238000 | 0.0003 |
796
+ | 1.8426 | 238500 | 0.0003 |
797
+ | 1.8465 | 239000 | 0.0003 |
798
+ | 1.8503 | 239500 | 0.0003 |
799
+ | 1.8542 | 240000 | 0.0003 |
800
+ | 1.8580 | 240500 | 0.0003 |
801
+ | 1.8619 | 241000 | 0.0003 |
802
+ | 1.8658 | 241500 | 0.0003 |
803
+ | 1.8696 | 242000 | 0.0003 |
804
+ | 1.8735 | 242500 | 0.0003 |
805
+ | 1.8774 | 243000 | 0.0003 |
806
+ | 1.8812 | 243500 | 0.0003 |
807
+ | 1.8851 | 244000 | 0.0003 |
808
+ | 1.8889 | 244500 | 0.0003 |
809
+ | 1.8928 | 245000 | 0.0003 |
810
+ | 1.8967 | 245500 | 0.0003 |
811
+ | 1.9005 | 246000 | 0.0003 |
812
+ | 1.9044 | 246500 | 0.0003 |
813
+ | 1.9083 | 247000 | 0.0003 |
814
+ | 1.9121 | 247500 | 0.0003 |
815
+ | 1.9160 | 248000 | 0.0003 |
816
+ | 1.9199 | 248500 | 0.0003 |
817
+ | 1.9237 | 249000 | 0.0003 |
818
+ | 1.9276 | 249500 | 0.0003 |
819
+ | 1.9314 | 250000 | 0.0003 |
820
+ | 1.9353 | 250500 | 0.0003 |
821
+ | 1.9392 | 251000 | 0.0003 |
822
+ | 1.9430 | 251500 | 0.0003 |
823
+ | 1.9469 | 252000 | 0.0003 |
824
+ | 1.9508 | 252500 | 0.0003 |
825
+ | 1.9546 | 253000 | 0.0003 |
826
+ | 1.9585 | 253500 | 0.0003 |
827
+ | 1.9623 | 254000 | 0.0003 |
828
+ | 1.9662 | 254500 | 0.0003 |
829
+ | 1.9701 | 255000 | 0.0003 |
830
+ | 1.9739 | 255500 | 0.0003 |
831
+ | 1.9778 | 256000 | 0.0003 |
832
+ | 1.9817 | 256500 | 0.0003 |
833
+ | 1.9855 | 257000 | 0.0003 |
834
+ | 1.9894 | 257500 | 0.0003 |
835
+ | 1.9932 | 258000 | 0.0003 |
836
+ | 1.9971 | 258500 | 0.0003 |
837
+ | 2.0010 | 259000 | 0.0003 |
838
+ | 2.0048 | 259500 | 0.0003 |
839
+ | 2.0087 | 260000 | 0.0003 |
840
+ | 2.0126 | 260500 | 0.0003 |
841
+ | 2.0164 | 261000 | 0.0003 |
842
+ | 2.0203 | 261500 | 0.0003 |
843
+ | 2.0242 | 262000 | 0.0003 |
844
+ | 2.0280 | 262500 | 0.0003 |
845
+ | 2.0319 | 263000 | 0.0003 |
846
+ | 2.0357 | 263500 | 0.0003 |
847
+ | 2.0396 | 264000 | 0.0003 |
848
+ | 2.0435 | 264500 | 0.0003 |
849
+ | 2.0473 | 265000 | 0.0003 |
850
+ | 2.0512 | 265500 | 0.0003 |
851
+ | 2.0551 | 266000 | 0.0003 |
852
+ | 2.0589 | 266500 | 0.0003 |
853
+ | 2.0628 | 267000 | 0.0003 |
854
+ | 2.0666 | 267500 | 0.0003 |
855
+ | 2.0705 | 268000 | 0.0003 |
856
+ | 2.0744 | 268500 | 0.0003 |
857
+ | 2.0782 | 269000 | 0.0003 |
858
+ | 2.0821 | 269500 | 0.0003 |
859
+ | 2.0860 | 270000 | 0.0003 |
860
+ | 2.0898 | 270500 | 0.0003 |
861
+ | 2.0937 | 271000 | 0.0003 |
862
+ | 2.0975 | 271500 | 0.0003 |
863
+ | 2.1014 | 272000 | 0.0003 |
864
+ | 2.1053 | 272500 | 0.0003 |
865
+ | 2.1091 | 273000 | 0.0003 |
866
+ | 2.1130 | 273500 | 0.0003 |
867
+ | 2.1169 | 274000 | 0.0003 |
868
+ | 2.1207 | 274500 | 0.0003 |
869
+ | 2.1246 | 275000 | 0.0003 |
870
+ | 2.1284 | 275500 | 0.0003 |
871
+ | 2.1323 | 276000 | 0.0003 |
872
+ | 2.1362 | 276500 | 0.0003 |
873
+ | 2.1400 | 277000 | 0.0003 |
874
+ | 2.1439 | 277500 | 0.0003 |
875
+ | 2.1478 | 278000 | 0.0003 |
876
+ | 2.1516 | 278500 | 0.0003 |
877
+ | 2.1555 | 279000 | 0.0003 |
878
+ | 2.1594 | 279500 | 0.0003 |
879
+ | 2.1632 | 280000 | 0.0003 |
880
+ | 2.1671 | 280500 | 0.0003 |
881
+ | 2.1709 | 281000 | 0.0003 |
882
+ | 2.1748 | 281500 | 0.0003 |
883
+ | 2.1787 | 282000 | 0.0003 |
884
+ | 2.1825 | 282500 | 0.0003 |
885
+ | 2.1864 | 283000 | 0.0003 |
886
+ | 2.1903 | 283500 | 0.0003 |
887
+ | 2.1941 | 284000 | 0.0003 |
888
+ | 2.1980 | 284500 | 0.0003 |
889
+ | 2.2018 | 285000 | 0.0003 |
890
+ | 2.2057 | 285500 | 0.0003 |
891
+ | 2.2096 | 286000 | 0.0003 |
892
+ | 2.2134 | 286500 | 0.0003 |
893
+ | 2.2173 | 287000 | 0.0003 |
894
+ | 2.2212 | 287500 | 0.0003 |
895
+ | 2.2250 | 288000 | 0.0003 |
896
+ | 2.2289 | 288500 | 0.0003 |
897
+ | 2.2327 | 289000 | 0.0003 |
898
+ | 2.2366 | 289500 | 0.0003 |
899
+ | 2.2405 | 290000 | 0.0003 |
900
+ | 2.2443 | 290500 | 0.0003 |
901
+ | 2.2482 | 291000 | 0.0003 |
902
+ | 2.2521 | 291500 | 0.0003 |
903
+ | 2.2559 | 292000 | 0.0003 |
904
+ | 2.2598 | 292500 | 0.0003 |
905
+ | 2.2636 | 293000 | 0.0003 |
906
+ | 2.2675 | 293500 | 0.0003 |
907
+ | 2.2714 | 294000 | 0.0003 |
908
+ | 2.2752 | 294500 | 0.0003 |
909
+ | 2.2791 | 295000 | 0.0003 |
910
+ | 2.2830 | 295500 | 0.0003 |
911
+ | 2.2868 | 296000 | 0.0003 |
912
+ | 2.2907 | 296500 | 0.0003 |
913
+ | 2.2946 | 297000 | 0.0003 |
914
+ | 2.2984 | 297500 | 0.0003 |
915
+ | 2.3023 | 298000 | 0.0003 |
916
+ | 2.3061 | 298500 | 0.0003 |
917
+ | 2.3100 | 299000 | 0.0003 |
918
+ | 2.3139 | 299500 | 0.0003 |
919
+ | 2.3177 | 300000 | 0.0003 |
920
+ | 2.3216 | 300500 | 0.0003 |
921
+ | 2.3255 | 301000 | 0.0003 |
922
+ | 2.3293 | 301500 | 0.0003 |
923
+ | 2.3332 | 302000 | 0.0003 |
924
+ | 2.3370 | 302500 | 0.0003 |
925
+ | 2.3409 | 303000 | 0.0003 |
926
+ | 2.3448 | 303500 | 0.0003 |
927
+ | 2.3486 | 304000 | 0.0003 |
928
+ | 2.3525 | 304500 | 0.0003 |
929
+ | 2.3564 | 305000 | 0.0003 |
930
+ | 2.3602 | 305500 | 0.0003 |
931
+ | 2.3641 | 306000 | 0.0003 |
932
+ | 2.3679 | 306500 | 0.0003 |
933
+ | 2.3718 | 307000 | 0.0003 |
934
+ | 2.3757 | 307500 | 0.0003 |
935
+ | 2.3795 | 308000 | 0.0003 |
936
+ | 2.3834 | 308500 | 0.0003 |
937
+ | 2.3873 | 309000 | 0.0003 |
938
+ | 2.3911 | 309500 | 0.0003 |
939
+ | 2.3950 | 310000 | 0.0003 |
940
+ | 2.3989 | 310500 | 0.0003 |
941
+ | 2.4027 | 311000 | 0.0003 |
942
+ | 2.4066 | 311500 | 0.0003 |
943
+ | 2.4104 | 312000 | 0.0003 |
944
+ | 2.4143 | 312500 | 0.0003 |
945
+ | 2.4182 | 313000 | 0.0003 |
946
+ | 2.4220 | 313500 | 0.0003 |
947
+ | 2.4259 | 314000 | 0.0003 |
948
+ | 2.4298 | 314500 | 0.0003 |
949
+ | 2.4336 | 315000 | 0.0003 |
950
+ | 2.4375 | 315500 | 0.0003 |
951
+ | 2.4413 | 316000 | 0.0003 |
952
+ | 2.4452 | 316500 | 0.0003 |
953
+ | 2.4491 | 317000 | 0.0003 |
954
+ | 2.4529 | 317500 | 0.0003 |
955
+ | 2.4568 | 318000 | 0.0003 |
956
+ | 2.4607 | 318500 | 0.0003 |
957
+ | 2.4645 | 319000 | 0.0003 |
958
+ | 2.4684 | 319500 | 0.0003 |
959
+ | 2.4722 | 320000 | 0.0003 |
960
+ | 2.4761 | 320500 | 0.0003 |
961
+ | 2.4800 | 321000 | 0.0003 |
962
+ | 2.4838 | 321500 | 0.0003 |
963
+ | 2.4877 | 322000 | 0.0003 |
964
+ | 2.4916 | 322500 | 0.0003 |
965
+ | 2.4954 | 323000 | 0.0003 |
966
+ | 2.4993 | 323500 | 0.0003 |
967
+ | 2.5031 | 324000 | 0.0003 |
968
+ | 2.5070 | 324500 | 0.0003 |
969
+ | 2.5109 | 325000 | 0.0003 |
970
+ | 2.5147 | 325500 | 0.0003 |
971
+ | 2.5186 | 326000 | 0.0003 |
972
+ | 2.5225 | 326500 | 0.0003 |
973
+ | 2.5263 | 327000 | 0.0003 |
974
+ | 2.5302 | 327500 | 0.0003 |
975
+ | 2.5341 | 328000 | 0.0003 |
976
+ | 2.5379 | 328500 | 0.0003 |
977
+ | 2.5418 | 329000 | 0.0003 |
978
+ | 2.5456 | 329500 | 0.0003 |
979
+ | 2.5495 | 330000 | 0.0003 |
980
+ | 2.5534 | 330500 | 0.0003 |
981
+ | 2.5572 | 331000 | 0.0003 |
982
+ | 2.5611 | 331500 | 0.0003 |
983
+ | 2.5650 | 332000 | 0.0003 |
984
+ | 2.5688 | 332500 | 0.0003 |
985
+ | 2.5727 | 333000 | 0.0003 |
986
+ | 2.5765 | 333500 | 0.0003 |
987
+ | 2.5804 | 334000 | 0.0003 |
988
+ | 2.5843 | 334500 | 0.0003 |
989
+ | 2.5881 | 335000 | 0.0003 |
990
+ | 2.5920 | 335500 | 0.0003 |
991
+ | 2.5959 | 336000 | 0.0003 |
992
+ | 2.5997 | 336500 | 0.0003 |
993
+ | 2.6036 | 337000 | 0.0003 |
994
+ | 2.6074 | 337500 | 0.0003 |
995
+ | 2.6113 | 338000 | 0.0003 |
996
+ | 2.6152 | 338500 | 0.0003 |
997
+ | 2.6190 | 339000 | 0.0003 |
998
+ | 2.6229 | 339500 | 0.0003 |
999
+ | 2.6268 | 340000 | 0.0003 |
1000
+ | 2.6306 | 340500 | 0.0003 |
1001
+ | 2.6345 | 341000 | 0.0003 |
1002
+ | 2.6383 | 341500 | 0.0003 |
1003
+ | 2.6422 | 342000 | 0.0003 |
1004
+ | 2.6461 | 342500 | 0.0003 |
1005
+ | 2.6499 | 343000 | 0.0003 |
1006
+ | 2.6538 | 343500 | 0.0003 |
1007
+ | 2.6577 | 344000 | 0.0003 |
1008
+ | 2.6615 | 344500 | 0.0003 |
1009
+ | 2.6654 | 345000 | 0.0003 |
1010
+ | 2.6693 | 345500 | 0.0003 |
1011
+ | 2.6731 | 346000 | 0.0003 |
1012
+ | 2.6770 | 346500 | 0.0003 |
1013
+ | 2.6808 | 347000 | 0.0003 |
1014
+ | 2.6847 | 347500 | 0.0003 |
1015
+ | 2.6886 | 348000 | 0.0003 |
1016
+ | 2.6924 | 348500 | 0.0003 |
1017
+ | 2.6963 | 349000 | 0.0003 |
1018
+ | 2.7002 | 349500 | 0.0003 |
1019
+ | 2.7040 | 350000 | 0.0003 |
1020
+ | 2.7079 | 350500 | 0.0003 |
1021
+ | 2.7117 | 351000 | 0.0003 |
1022
+ | 2.7156 | 351500 | 0.0003 |
1023
+ | 2.7195 | 352000 | 0.0003 |
1024
+ | 2.7233 | 352500 | 0.0003 |
1025
+ | 2.7272 | 353000 | 0.0003 |
1026
+ | 2.7311 | 353500 | 0.0003 |
1027
+ | 2.7349 | 354000 | 0.0003 |
1028
+ | 2.7388 | 354500 | 0.0003 |
1029
+ | 2.7426 | 355000 | 0.0003 |
1030
+ | 2.7465 | 355500 | 0.0003 |
1031
+ | 2.7504 | 356000 | 0.0003 |
1032
+ | 2.7542 | 356500 | 0.0003 |
1033
+ | 2.7581 | 357000 | 0.0003 |
1034
+ | 2.7620 | 357500 | 0.0003 |
1035
+ | 2.7658 | 358000 | 0.0003 |
1036
+ | 2.7697 | 358500 | 0.0003 |
1037
+ | 2.7736 | 359000 | 0.0003 |
1038
+ | 2.7774 | 359500 | 0.0003 |
1039
+ | 2.7813 | 360000 | 0.0003 |
1040
+ | 2.7851 | 360500 | 0.0003 |
1041
+ | 2.7890 | 361000 | 0.0003 |
1042
+ | 2.7929 | 361500 | 0.0003 |
1043
+ | 2.7967 | 362000 | 0.0003 |
1044
+ | 2.8006 | 362500 | 0.0003 |
1045
+ | 2.8045 | 363000 | 0.0003 |
1046
+ | 2.8083 | 363500 | 0.0003 |
1047
+ | 2.8122 | 364000 | 0.0003 |
1048
+ | 2.8160 | 364500 | 0.0003 |
1049
+ | 2.8199 | 365000 | 0.0003 |
1050
+ | 2.8238 | 365500 | 0.0003 |
1051
+ | 2.8276 | 366000 | 0.0003 |
1052
+ | 2.8315 | 366500 | 0.0003 |
1053
+ | 2.8354 | 367000 | 0.0003 |
1054
+ | 2.8392 | 367500 | 0.0003 |
1055
+ | 2.8431 | 368000 | 0.0003 |
1056
+ | 2.8469 | 368500 | 0.0003 |
1057
+ | 2.8508 | 369000 | 0.0003 |
1058
+ | 2.8547 | 369500 | 0.0003 |
1059
+ | 2.8585 | 370000 | 0.0003 |
1060
+ | 2.8624 | 370500 | 0.0003 |
1061
+ | 2.8663 | 371000 | 0.0003 |
1062
+ | 2.8701 | 371500 | 0.0003 |
1063
+ | 2.8740 | 372000 | 0.0003 |
1064
+ | 2.8778 | 372500 | 0.0003 |
1065
+ | 2.8817 | 373000 | 0.0003 |
1066
+ | 2.8856 | 373500 | 0.0003 |
1067
+ | 2.8894 | 374000 | 0.0003 |
1068
+ | 2.8933 | 374500 | 0.0003 |
1069
+ | 2.8972 | 375000 | 0.0003 |
1070
+ | 2.9010 | 375500 | 0.0003 |
1071
+ | 2.9049 | 376000 | 0.0003 |
1072
+ | 2.9088 | 376500 | 0.0003 |
1073
+ | 2.9126 | 377000 | 0.0003 |
1074
+ | 2.9165 | 377500 | 0.0003 |
1075
+ | 2.9203 | 378000 | 0.0003 |
1076
+ | 2.9242 | 378500 | 0.0003 |
1077
+ | 2.9281 | 379000 | 0.0003 |
1078
+ | 2.9319 | 379500 | 0.0003 |
1079
+ | 2.9358 | 380000 | 0.0003 |
1080
+ | 2.9397 | 380500 | 0.0003 |
1081
+ | 2.9435 | 381000 | 0.0003 |
1082
+ | 2.9474 | 381500 | 0.0003 |
1083
+ | 2.9512 | 382000 | 0.0003 |
1084
+ | 2.9551 | 382500 | 0.0003 |
1085
+ | 2.9590 | 383000 | 0.0003 |
1086
+ | 2.9628 | 383500 | 0.0003 |
1087
+ | 2.9667 | 384000 | 0.0003 |
1088
+ | 2.9706 | 384500 | 0.0003 |
1089
+ | 2.9744 | 385000 | 0.0003 |
1090
+ | 2.9783 | 385500 | 0.0003 |
1091
+ | 2.9821 | 386000 | 0.0003 |
1092
+ | 2.9860 | 386500 | 0.0003 |
1093
+ | 2.9899 | 387000 | 0.0003 |
1094
+ | 2.9937 | 387500 | 0.0003 |
1095
+ | 2.9976 | 388000 | 0.0003 |
1096
+
1097
+ </details>
1098
+
1099
+ ### Framework Versions
1100
+ - Python: 3.10.13
1101
+ - Sentence Transformers: 4.1.0
1102
+ - Transformers: 4.52.4
1103
+ - PyTorch: 2.5.1+cu121
1104
+ - Accelerate: 1.7.0
1105
+ - Datasets: 3.6.0
1106
+ - Tokenizers: 0.21.1
1107
+
1108
+ ## Citation
1109
+
1110
+ ### BibTeX
1111
+
1112
+ #### Sentence Transformers
1113
+ ```bibtex
1114
+ @inproceedings{reimers-2019-sentence-bert,
1115
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1116
+ author = "Reimers, Nils and Gurevych, Iryna",
1117
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1118
+ month = "11",
1119
+ year = "2019",
1120
+ publisher = "Association for Computational Linguistics",
1121
+ url = "https://arxiv.org/abs/1908.10084",
1122
+ }
1123
+ ```
1124
+
1125
+ #### MSELoss
1126
+ ```bibtex
1127
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
1128
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
1129
+ author = "Reimers, Nils and Gurevych, Iryna",
1130
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
1131
+ month = "11",
1132
+ year = "2020",
1133
+ publisher = "Association for Computational Linguistics",
1134
+ url = "https://arxiv.org/abs/2004.09813",
1135
+ }
1136
+ ```
1137
+
1138
+ <!--
1139
+ ## Glossary
1140
+
1141
+ *Clearly define terms in order to be accessible across audiences.*
1142
+ -->
1143
+
1144
+ <!--
1145
+ ## Model Card Authors
1146
+
1147
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1148
+ -->
1149
+
1150
+ <!--
1151
+ ## Model Card Contact
1152
+
1153
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1154
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 6,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "PreTrainedTokenizerFast",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.52.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 50001
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6611d7d601f13dea2bf5ee52fe94318fccb3e80b28f622cbe7ce1933b28dfd
3
+ size 120784024
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470458dd0858a90542a8d24f15e9ec1a26c42cee65f32fb5da25ab2ebd67e98f
3
+ size 240447226
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98e4d78481ea971bf0bb8b24b08dd275cdb09ff843a754e54fcb4e6c58eee180
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cefd69ea6948923999cb2f7313f46d5c92d1d5f55859e897a9ade2536d72159
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[UNK]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[MASK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "50000": {
36
+ "content": "[PAD]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "extra_special_tokens": {},
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "tokenizer_class": "PreTrainedTokenizer",
52
+ "unk_token": "[UNK]"
53
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f0413e64a519a4bd1af23d7266c6e95699e56f3d70c94df7f05e27996428e47
3
+ size 5560