Create modeling_dbrx.py
Browse files- modeling_dbrx.py +1448 -0
modeling_dbrx.py
ADDED
@@ -0,0 +1,1448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# code adapted from https://huggingface.co/fahadh4ilyas
|
2 |
+
"""PyTorch Dbrx model."""
|
3 |
+
|
4 |
+
import math
|
5 |
+
import warnings
|
6 |
+
from copy import deepcopy
|
7 |
+
from functools import partial
|
8 |
+
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch import nn
|
14 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
15 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
16 |
+
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast,
|
17 |
+
MoeModelOutputWithPast)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import is_flash_attn_2_available, logging
|
20 |
+
|
21 |
+
from .configuration_dbrx import DbrxAttentionConfig, DbrxConfig, DbrxFFNConfig
|
22 |
+
|
23 |
+
if is_flash_attn_2_available():
|
24 |
+
try:
|
25 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
26 |
+
from flash_attn.bert_padding import pad_input # noqa
|
27 |
+
from flash_attn.bert_padding import index_first_axis, unpad_input
|
28 |
+
except:
|
29 |
+
pass
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
_CONFIG_FOR_DOC = 'DbrxConfig'
|
34 |
+
|
35 |
+
#############################################################################
|
36 |
+
# Copied from LLaMaRotaryEmbedding
|
37 |
+
#############################################################################
|
38 |
+
|
39 |
+
|
40 |
+
class DbrxRotaryEmbedding(nn.Module):
|
41 |
+
|
42 |
+
def __init__(self,
|
43 |
+
dim: int,
|
44 |
+
max_position_embeddings: int = 2048,
|
45 |
+
base: float = 10000.0,
|
46 |
+
scaling_factor: float = 1.0):
|
47 |
+
super().__init__()
|
48 |
+
self.scaling_factor = scaling_factor
|
49 |
+
self.dim = dim
|
50 |
+
self.max_position_embeddings = max_position_embeddings
|
51 |
+
self.base = base
|
52 |
+
inv_freq = 1.0 / (self.base**(
|
53 |
+
torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
|
54 |
+
self.register_buffer('inv_freq', inv_freq, persistent=False)
|
55 |
+
# For BC we register cos and sin cached
|
56 |
+
self.max_seq_len_cached = max_position_embeddings
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def forward(
|
60 |
+
self, x: torch.Tensor, position_ids: torch.LongTensor
|
61 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
62 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
63 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
|
64 |
+
position_ids.shape[0], -1, 1)
|
65 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
66 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
67 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
68 |
+
device_type = x.device.type
|
69 |
+
device_type = device_type if isinstance(
|
70 |
+
device_type, str) and device_type != 'mps' else 'cpu'
|
71 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
72 |
+
freqs = (inv_freq_expanded.float()
|
73 |
+
@ position_ids_expanded.float()).transpose(1, 2)
|
74 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
75 |
+
cos = emb.cos()
|
76 |
+
sin = emb.sin()
|
77 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
78 |
+
|
79 |
+
|
80 |
+
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
81 |
+
"""Rotates half the hidden dims of the input."""
|
82 |
+
x1 = x[..., :x.shape[-1] // 2]
|
83 |
+
x2 = x[..., x.shape[-1] // 2:]
|
84 |
+
return torch.cat((-x2, x1), dim=-1)
|
85 |
+
|
86 |
+
|
87 |
+
def apply_rotary_pos_emb(
|
88 |
+
q: torch.Tensor,
|
89 |
+
k: torch.Tensor,
|
90 |
+
cos: torch.Tensor,
|
91 |
+
sin: torch.Tensor,
|
92 |
+
unsqueeze_dim: int = 1) -> Tuple[torch.Tensor, torch.Tensor]:
|
93 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
q (`torch.Tensor`): The query tensor.
|
97 |
+
k (`torch.Tensor`): The key tensor.
|
98 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
99 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
100 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
101 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos and
|
102 |
+
sin so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
103 |
+
that cos and sin have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
104 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
105 |
+
cos and sin broadcastable to the shapes of q and k. Similarly, if q and k have
|
106 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
110 |
+
"""
|
111 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
112 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
113 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
114 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
115 |
+
return q_embed, k_embed
|
116 |
+
|
117 |
+
|
118 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
119 |
+
"""Equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
120 |
+
|
121 |
+
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to
|
122 |
+
(batch, num_attention_heads, seqlen, head_dim)
|
123 |
+
"""
|
124 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
125 |
+
if n_rep == 1:
|
126 |
+
return hidden_states
|
127 |
+
hidden_states = hidden_states[:, :,
|
128 |
+
None, :, :].expand(batch, num_key_value_heads,
|
129 |
+
n_rep, slen, head_dim)
|
130 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen,
|
131 |
+
head_dim)
|
132 |
+
|
133 |
+
|
134 |
+
#############################################################################
|
135 |
+
|
136 |
+
#############################################################################
|
137 |
+
# Modified from modeling_mixtral
|
138 |
+
#############################################################################
|
139 |
+
|
140 |
+
|
141 |
+
def load_balancing_loss_func(
|
142 |
+
gate_logits: torch.Tensor,
|
143 |
+
num_experts: int,
|
144 |
+
top_k: int,
|
145 |
+
attention_mask: Optional[torch.Tensor],
|
146 |
+
) -> torch.Tensor:
|
147 |
+
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
148 |
+
|
149 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
150 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
151 |
+
experts is too unbalanced.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
155 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
156 |
+
shape [batch_size X sequence_length, num_experts].
|
157 |
+
num_experts (`int`):
|
158 |
+
Number of experts.
|
159 |
+
top_k (`int`):
|
160 |
+
The number of experts each token is routed to.
|
161 |
+
attention_mask (`torch.Tensor`, None):
|
162 |
+
The attention_mask used in forward function
|
163 |
+
shape [batch_size X sequence_length] if not None.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
The auxiliary loss.
|
167 |
+
"""
|
168 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
169 |
+
return torch.tensor(0.0)
|
170 |
+
|
171 |
+
if isinstance(gate_logits, tuple):
|
172 |
+
compute_device = gate_logits[0].device
|
173 |
+
concatenated_gate_logits = torch.cat(
|
174 |
+
[layer_gate.to(compute_device) for layer_gate in gate_logits],
|
175 |
+
dim=0)
|
176 |
+
|
177 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits,
|
178 |
+
dim=-1)
|
179 |
+
|
180 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
181 |
+
|
182 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
183 |
+
|
184 |
+
if attention_mask is None:
|
185 |
+
# Compute the percentage of tokens routed to each experts
|
186 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
187 |
+
|
188 |
+
# Compute the average probability of routing to these experts
|
189 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
190 |
+
else:
|
191 |
+
batch_size, sequence_length = attention_mask.shape
|
192 |
+
num_hidden_layers = concatenated_gate_logits.shape[0] // (
|
193 |
+
batch_size * sequence_length)
|
194 |
+
|
195 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
|
196 |
+
expert_attention_mask = (attention_mask[None, :, :, None, None].expand(
|
197 |
+
(num_hidden_layers, batch_size, sequence_length, top_k,
|
198 |
+
num_experts)).reshape(-1, top_k, num_experts).to(compute_device))
|
199 |
+
|
200 |
+
# Compute the percentage of tokens routed to each experts
|
201 |
+
tokens_per_expert = torch.sum(
|
202 |
+
expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
|
203 |
+
expert_attention_mask, dim=0)
|
204 |
+
|
205 |
+
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
|
206 |
+
router_per_expert_attention_mask = (
|
207 |
+
attention_mask[None, :, :, None].expand(
|
208 |
+
(num_hidden_layers, batch_size, sequence_length,
|
209 |
+
num_experts)).reshape(-1, num_experts).to(compute_device))
|
210 |
+
|
211 |
+
# Compute the average probability of routing to these experts
|
212 |
+
router_prob_per_expert = torch.sum(
|
213 |
+
routing_weights * router_per_expert_attention_mask,
|
214 |
+
dim=0) / torch.sum(router_per_expert_attention_mask, dim=0)
|
215 |
+
|
216 |
+
overall_loss = torch.sum(tokens_per_expert *
|
217 |
+
router_prob_per_expert.unsqueeze(0))
|
218 |
+
return overall_loss * num_experts
|
219 |
+
|
220 |
+
|
221 |
+
#############################################################################
|
222 |
+
|
223 |
+
|
224 |
+
def resolve_ffn_act_fn(
|
225 |
+
ffn_act_fn: dict) -> Callable[[torch.Tensor], torch.Tensor]:
|
226 |
+
"""Resolve the activation function for the feed-forward network.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
ffn_act_fn (dict): The configuration dictionary for the activation function.
|
230 |
+
The dict config must specify the 'name' of a torch.nn.functional activation
|
231 |
+
function. All of other key values pairs are bound to the function as a partial.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
Callable[[torch.Tensor], torch.Tensor]: The activation function.
|
235 |
+
"""
|
236 |
+
config = deepcopy(ffn_act_fn)
|
237 |
+
name = config.pop('name')
|
238 |
+
if not hasattr(nn.functional, name):
|
239 |
+
raise ValueError(f'Unrecognised activation function name ({name}).')
|
240 |
+
act = getattr(nn.functional, name)
|
241 |
+
return partial(act, **config)
|
242 |
+
|
243 |
+
|
244 |
+
#############################################################################
|
245 |
+
# Copied from LLaMaAttention
|
246 |
+
#############################################################################
|
247 |
+
|
248 |
+
|
249 |
+
def _get_unpad_data(attention_mask: torch.Tensor):
|
250 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
251 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
252 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
253 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
|
254 |
+
(1, 0))
|
255 |
+
return (
|
256 |
+
indices,
|
257 |
+
cu_seqlens,
|
258 |
+
max_seqlen_in_batch,
|
259 |
+
)
|
260 |
+
|
261 |
+
|
262 |
+
class DbrxAttention(nn.Module):
|
263 |
+
"""Multi-head self attention."""
|
264 |
+
|
265 |
+
def __init__(self,
|
266 |
+
hidden_size: int,
|
267 |
+
num_heads: int,
|
268 |
+
max_position_embeddings: int,
|
269 |
+
attn_config: DbrxAttentionConfig,
|
270 |
+
block_idx: Optional[int] = None):
|
271 |
+
super().__init__()
|
272 |
+
self.hidden_size = hidden_size
|
273 |
+
self.num_heads = num_heads
|
274 |
+
self.head_dim = self.hidden_size // self.num_heads
|
275 |
+
self.max_position_embeddings = max_position_embeddings
|
276 |
+
self.block_idx = block_idx
|
277 |
+
self.config = attn_config
|
278 |
+
if block_idx is None:
|
279 |
+
logger.warning_once(
|
280 |
+
f'Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will '
|
281 |
+
+
|
282 |
+
'lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` '
|
283 |
+
+ 'when creating this class.')
|
284 |
+
|
285 |
+
self.attn_pdrop = attn_config.attn_pdrop
|
286 |
+
self.clip_qkv = attn_config.clip_qkv
|
287 |
+
self.num_key_value_heads = attn_config.kv_n_heads
|
288 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
289 |
+
self.rope_theta = attn_config.rope_theta
|
290 |
+
|
291 |
+
self.q_proj = nn.Linear(self.hidden_size,
|
292 |
+
self.hidden_size,
|
293 |
+
bias=False)
|
294 |
+
self.k_proj = nn.Linear(self.hidden_size,
|
295 |
+
self.num_key_value_heads * self.head_dim,
|
296 |
+
bias=False)
|
297 |
+
self.v_proj = nn.Linear(self.hidden_size,
|
298 |
+
self.num_key_value_heads * self.head_dim,
|
299 |
+
bias=False)
|
300 |
+
self.out_proj = nn.Linear(self.hidden_size,
|
301 |
+
self.hidden_size,
|
302 |
+
bias=False)
|
303 |
+
self.rotary_emb = DbrxRotaryEmbedding(
|
304 |
+
self.head_dim,
|
305 |
+
max_position_embeddings=self.max_position_embeddings,
|
306 |
+
base=self.rope_theta,
|
307 |
+
)
|
308 |
+
|
309 |
+
def forward(
|
310 |
+
self,
|
311 |
+
hidden_states: torch.Tensor,
|
312 |
+
position_ids: torch.LongTensor,
|
313 |
+
attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
past_key_value: Optional[Cache] = None,
|
315 |
+
output_attentions: bool = False,
|
316 |
+
use_cache: bool = False,
|
317 |
+
cache_position: Optional[torch.LongTensor] = None,
|
318 |
+
**kwargs: Any,
|
319 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
320 |
+
bsz, q_len, _ = hidden_states.size()
|
321 |
+
|
322 |
+
query_states = self.q_proj(hidden_states)
|
323 |
+
key_states = self.k_proj(hidden_states)
|
324 |
+
value_states = self.v_proj(hidden_states)
|
325 |
+
if self.clip_qkv is not None:
|
326 |
+
query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
327 |
+
key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
328 |
+
value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
329 |
+
|
330 |
+
query_states = query_states.view(bsz, q_len, self.num_heads,
|
331 |
+
self.head_dim).transpose(1, 2)
|
332 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
|
333 |
+
self.head_dim).transpose(1, 2)
|
334 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
|
335 |
+
self.head_dim).transpose(1, 2)
|
336 |
+
|
337 |
+
past_key_value = getattr(self, 'past_key_value', past_key_value)
|
338 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
339 |
+
query_states, key_states = apply_rotary_pos_emb(query_states,
|
340 |
+
key_states, cos, sin)
|
341 |
+
|
342 |
+
if past_key_value is not None:
|
343 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
344 |
+
cache_kwargs = {
|
345 |
+
'sin': sin,
|
346 |
+
'cos': cos,
|
347 |
+
'cache_position': cache_position
|
348 |
+
}
|
349 |
+
key_states, value_states = past_key_value.update(
|
350 |
+
key_states, value_states, self.block_idx, cache_kwargs)
|
351 |
+
|
352 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
353 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
354 |
+
|
355 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(
|
356 |
+
2, 3)) / math.sqrt(self.head_dim)
|
357 |
+
|
358 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
359 |
+
causal_mask = attention_mask[:, :, :, :key_states.shape[-2]]
|
360 |
+
attn_weights = attn_weights + causal_mask
|
361 |
+
|
362 |
+
# upcast attention to fp32
|
363 |
+
attn_weights = nn.functional.softmax(attn_weights,
|
364 |
+
dim=-1,
|
365 |
+
dtype=torch.float32).to(
|
366 |
+
query_states.dtype)
|
367 |
+
attn_weights = nn.functional.dropout(attn_weights,
|
368 |
+
p=self.attn_pdrop,
|
369 |
+
training=self.training)
|
370 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
371 |
+
|
372 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
373 |
+
raise ValueError(
|
374 |
+
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
|
375 |
+
+ f' {attn_output.size()}')
|
376 |
+
|
377 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
378 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
379 |
+
attn_output = self.out_proj(attn_output)
|
380 |
+
|
381 |
+
if not output_attentions:
|
382 |
+
attn_weights = None
|
383 |
+
|
384 |
+
return attn_output, attn_weights, past_key_value
|
385 |
+
|
386 |
+
|
387 |
+
class DbrxFlashAttention2(DbrxAttention):
|
388 |
+
"""Dbrx flash attention module.
|
389 |
+
|
390 |
+
This module inherits from `DbrxAttention` as the weights of the module stays
|
391 |
+
untouched. The only required change would be on the forward pass where it
|
392 |
+
calls the public API of flash attention.
|
393 |
+
"""
|
394 |
+
|
395 |
+
def __init__(self, *args: Any, **kwargs: Any):
|
396 |
+
if not is_flash_attn_2_available():
|
397 |
+
raise ImportError(
|
398 |
+
'Flash Attention 2 is not available. Please install it with `pip install flash-attn`.'
|
399 |
+
)
|
400 |
+
|
401 |
+
super().__init__(*args, **kwargs)
|
402 |
+
|
403 |
+
def forward(
|
404 |
+
self,
|
405 |
+
hidden_states: torch.Tensor,
|
406 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
407 |
+
position_ids: Optional[torch.LongTensor] = None,
|
408 |
+
past_key_value: Optional[Cache] = None,
|
409 |
+
output_attentions: bool = False,
|
410 |
+
use_cache: bool = False,
|
411 |
+
cache_position: Optional[torch.LongTensor] = None,
|
412 |
+
**kwargs: Any,
|
413 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
414 |
+
Optional[Tuple[torch.Tensor]]]:
|
415 |
+
logger.debug(
|
416 |
+
'Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.'
|
417 |
+
)
|
418 |
+
output_attentions = False
|
419 |
+
|
420 |
+
bsz, q_len, _ = hidden_states.size()
|
421 |
+
|
422 |
+
query_states = self.q_proj(hidden_states)
|
423 |
+
key_states = self.k_proj(hidden_states)
|
424 |
+
value_states = self.v_proj(hidden_states)
|
425 |
+
if self.clip_qkv is not None:
|
426 |
+
query_states = query_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
427 |
+
key_states = key_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
428 |
+
value_states = value_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
|
429 |
+
|
430 |
+
# Flash attention requires the input to have the shape
|
431 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
432 |
+
# therefore we just need to keep the original shape
|
433 |
+
query_states = query_states.view(bsz, q_len, self.num_heads,
|
434 |
+
self.head_dim).transpose(1, 2)
|
435 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
|
436 |
+
self.head_dim).transpose(1, 2)
|
437 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
|
438 |
+
self.head_dim).transpose(1, 2)
|
439 |
+
|
440 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
441 |
+
query_states, key_states = apply_rotary_pos_emb(query_states,
|
442 |
+
key_states, cos, sin)
|
443 |
+
|
444 |
+
past_key_value = getattr(self, 'past_key_value', past_key_value)
|
445 |
+
|
446 |
+
if past_key_value is not None:
|
447 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
448 |
+
cache_kwargs = {
|
449 |
+
'sin': sin,
|
450 |
+
'cos': cos,
|
451 |
+
'cache_position': cache_position
|
452 |
+
}
|
453 |
+
key_states, value_states = past_key_value.update(
|
454 |
+
key_states, value_states, self.block_idx, cache_kwargs)
|
455 |
+
|
456 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
457 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
458 |
+
# to be able to avoid many of these transpose/reshape/view.
|
459 |
+
query_states = query_states.transpose(1, 2)
|
460 |
+
key_states = key_states.transpose(1, 2)
|
461 |
+
value_states = value_states.transpose(1, 2)
|
462 |
+
|
463 |
+
dropout_rate = self.attn_pdrop if self.training else 0.0
|
464 |
+
|
465 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
466 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
467 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
468 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
469 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
470 |
+
input_dtype = query_states.dtype
|
471 |
+
if input_dtype == torch.float32:
|
472 |
+
if torch.is_autocast_enabled():
|
473 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
474 |
+
# Handle the case where the model is quantized
|
475 |
+
elif hasattr(self.config, '_pre_quantization_dtype'):
|
476 |
+
target_dtype = self.config._pre_quantization_dtype
|
477 |
+
else:
|
478 |
+
target_dtype = query_states.dtype
|
479 |
+
|
480 |
+
logger.warning_once(
|
481 |
+
f'The input hidden states seems to be silently casted in float32, this might be '
|
482 |
+
+
|
483 |
+
f'related to the fact you have upcasted embedding or layer norm layers in '
|
484 |
+
+ f'float32. We will cast back the input in {target_dtype}.')
|
485 |
+
|
486 |
+
query_states = query_states.to(target_dtype)
|
487 |
+
key_states = key_states.to(target_dtype)
|
488 |
+
value_states = value_states.to(target_dtype)
|
489 |
+
|
490 |
+
attn_output = self._flash_attention_forward(
|
491 |
+
query_states,
|
492 |
+
key_states,
|
493 |
+
value_states,
|
494 |
+
attention_mask,
|
495 |
+
q_len,
|
496 |
+
dropout=dropout_rate,
|
497 |
+
)
|
498 |
+
|
499 |
+
attn_output = attn_output.reshape(bsz, q_len,
|
500 |
+
self.hidden_size).contiguous()
|
501 |
+
attn_output = self.out_proj(attn_output)
|
502 |
+
|
503 |
+
if not output_attentions:
|
504 |
+
attn_weights = None
|
505 |
+
|
506 |
+
return attn_output, attn_weights, past_key_value # type: ignore
|
507 |
+
|
508 |
+
def _flash_attention_forward(
|
509 |
+
self,
|
510 |
+
query_states: torch.Tensor,
|
511 |
+
key_states: torch.Tensor,
|
512 |
+
value_states: torch.Tensor,
|
513 |
+
attention_mask: Union[torch.LongTensor, None],
|
514 |
+
query_length: int,
|
515 |
+
dropout: float = 0.0,
|
516 |
+
softmax_scale: Optional[float] = None,
|
517 |
+
):
|
518 |
+
"""Use FlashAttention, stripping padding tokens if necessary.
|
519 |
+
|
520 |
+
Args:
|
521 |
+
query_states (torch.Tensor): Input query states to be passed to Flash Attention API
|
522 |
+
key_states (torch.Tensor): Input key states to be passed to Flash Attention API
|
523 |
+
value_states (torch.Tensor): Input value states to be passed to Flash Attention API
|
524 |
+
attention_mask (torch.LongTensor | None): The padding mask - corresponds to a tensor of size
|
525 |
+
(batch_size, seq_len) where 0 stands for the position of padding tokens and 1
|
526 |
+
for the position of non-padding tokens.
|
527 |
+
query_length (int): The length of the query sequence
|
528 |
+
dropout (float): Attention dropout
|
529 |
+
softmax_scale (float, optional): The scaling of QK^T before applying softmax.
|
530 |
+
Defaults to 1 / sqrt(head_dim)
|
531 |
+
"""
|
532 |
+
causal = True
|
533 |
+
# Contains at least one padding token in the sequence
|
534 |
+
if attention_mask is not None:
|
535 |
+
batch_size = query_states.shape[0]
|
536 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
537 |
+
query_states, key_states, value_states, attention_mask,
|
538 |
+
query_length)
|
539 |
+
|
540 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
541 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
542 |
+
|
543 |
+
attn_output_unpad = flash_attn_varlen_func(
|
544 |
+
query_states,
|
545 |
+
key_states,
|
546 |
+
value_states,
|
547 |
+
cu_seqlens_q=cu_seqlens_q,
|
548 |
+
cu_seqlens_k=cu_seqlens_k,
|
549 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
550 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
551 |
+
dropout_p=dropout,
|
552 |
+
softmax_scale=softmax_scale,
|
553 |
+
causal=causal,
|
554 |
+
)
|
555 |
+
|
556 |
+
attn_output = pad_input(
|
557 |
+
attn_output_unpad,
|
558 |
+
indices_q,
|
559 |
+
batch_size,
|
560 |
+
query_length,
|
561 |
+
)
|
562 |
+
else:
|
563 |
+
attn_output = flash_attn_func(
|
564 |
+
query_states,
|
565 |
+
key_states,
|
566 |
+
value_states,
|
567 |
+
dropout,
|
568 |
+
softmax_scale=softmax_scale,
|
569 |
+
causal=causal,
|
570 |
+
)
|
571 |
+
|
572 |
+
return attn_output
|
573 |
+
|
574 |
+
def _upad_input(self, query_layer: torch.Tensor, key_layer: torch.Tensor,
|
575 |
+
value_layer: torch.Tensor, attention_mask: torch.Tensor,
|
576 |
+
query_length: int):
|
577 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(
|
578 |
+
attention_mask)
|
579 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
580 |
+
|
581 |
+
key_layer = index_first_axis(
|
582 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
|
583 |
+
head_dim), indices_k)
|
584 |
+
value_layer = index_first_axis(
|
585 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads,
|
586 |
+
head_dim), indices_k)
|
587 |
+
if query_length == kv_seq_len:
|
588 |
+
query_layer = index_first_axis(
|
589 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads,
|
590 |
+
head_dim), indices_k)
|
591 |
+
cu_seqlens_q = cu_seqlens_k
|
592 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
593 |
+
indices_q = indices_k
|
594 |
+
elif query_length == 1:
|
595 |
+
max_seqlen_in_batch_q = 1
|
596 |
+
cu_seqlens_q = torch.arange(
|
597 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
598 |
+
) # There is a memcpy here, that is very bad.
|
599 |
+
indices_q = cu_seqlens_q[:-1]
|
600 |
+
query_layer = query_layer.squeeze(1)
|
601 |
+
else:
|
602 |
+
# The -q_len: slice assumes left padding.
|
603 |
+
attention_mask = attention_mask[:, -query_length:]
|
604 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
605 |
+
query_layer, attention_mask)
|
606 |
+
|
607 |
+
return (
|
608 |
+
query_layer,
|
609 |
+
key_layer,
|
610 |
+
value_layer,
|
611 |
+
indices_q,
|
612 |
+
(cu_seqlens_q, cu_seqlens_k),
|
613 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
614 |
+
)
|
615 |
+
|
616 |
+
|
617 |
+
DBRX_ATTENTION_CLASSES = {
|
618 |
+
'eager': DbrxAttention,
|
619 |
+
'flash_attention_2': DbrxFlashAttention2,
|
620 |
+
}
|
621 |
+
|
622 |
+
|
623 |
+
class DbrxNormAttentionNorm(nn.Module):
|
624 |
+
|
625 |
+
def __init__(
|
626 |
+
self,
|
627 |
+
hidden_size: int,
|
628 |
+
num_heads: int,
|
629 |
+
max_position_embeddings: int,
|
630 |
+
resid_pdrop: float,
|
631 |
+
attn_implementation: str,
|
632 |
+
attn_config: DbrxAttentionConfig,
|
633 |
+
block_idx: Optional[int] = None,
|
634 |
+
):
|
635 |
+
super().__init__()
|
636 |
+
self.block_idx = block_idx
|
637 |
+
self.resid_pdrop = resid_pdrop
|
638 |
+
self.norm_1 = nn.LayerNorm(hidden_size, bias=False)
|
639 |
+
self.attn = DBRX_ATTENTION_CLASSES[attn_implementation](
|
640 |
+
hidden_size=hidden_size,
|
641 |
+
num_heads=num_heads,
|
642 |
+
max_position_embeddings=max_position_embeddings,
|
643 |
+
attn_config=attn_config,
|
644 |
+
block_idx=block_idx,
|
645 |
+
)
|
646 |
+
self.norm_2 = nn.LayerNorm(hidden_size, bias=False)
|
647 |
+
|
648 |
+
def forward(
|
649 |
+
self,
|
650 |
+
hidden_states: torch.Tensor,
|
651 |
+
position_ids: torch.LongTensor,
|
652 |
+
attention_mask: Optional[torch.Tensor] = None,
|
653 |
+
past_key_value: Optional[Cache] = None,
|
654 |
+
output_attentions: bool = False,
|
655 |
+
use_cache: bool = False,
|
656 |
+
cache_position: Optional[torch.LongTensor] = None,
|
657 |
+
**kwargs: Any,
|
658 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor],
|
659 |
+
Optional[Cache]]:
|
660 |
+
|
661 |
+
residual_states = hidden_states
|
662 |
+
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
|
663 |
+
|
664 |
+
hidden_states, attn_weights, past_key_value = self.attn(
|
665 |
+
hidden_states=hidden_states,
|
666 |
+
attention_mask=attention_mask,
|
667 |
+
position_ids=position_ids,
|
668 |
+
past_key_value=past_key_value,
|
669 |
+
output_attentions=output_attentions,
|
670 |
+
use_cache=use_cache,
|
671 |
+
cache_position=cache_position,
|
672 |
+
**kwargs,
|
673 |
+
)
|
674 |
+
|
675 |
+
hidden_states = nn.functional.dropout(hidden_states,
|
676 |
+
p=self.resid_pdrop,
|
677 |
+
training=self.training)
|
678 |
+
hidden_states = hidden_states + residual_states
|
679 |
+
|
680 |
+
residual_states = hidden_states
|
681 |
+
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
|
682 |
+
|
683 |
+
return residual_states, hidden_states, attn_weights, past_key_value
|
684 |
+
|
685 |
+
|
686 |
+
class DbrxRouter(nn.Module):
|
687 |
+
|
688 |
+
def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int,
|
689 |
+
moe_jitter_eps: Optional[float],
|
690 |
+
moe_normalize_expert_weights: Optional[float],
|
691 |
+
uniform_expert_assignment: bool):
|
692 |
+
super().__init__()
|
693 |
+
self.hidden_size = hidden_size
|
694 |
+
self.moe_num_experts = moe_num_experts
|
695 |
+
self.moe_top_k = moe_top_k
|
696 |
+
self.moe_jitter_eps = moe_jitter_eps
|
697 |
+
self.moe_normalize_expert_weights = moe_normalize_expert_weights
|
698 |
+
self.uniform_expert_assignment = uniform_expert_assignment
|
699 |
+
|
700 |
+
self.layer = nn.Linear(self.hidden_size,
|
701 |
+
self.moe_num_experts,
|
702 |
+
bias=False)
|
703 |
+
|
704 |
+
def jitter(self, x: torch.Tensor) -> torch.Tensor:
|
705 |
+
if self.moe_jitter_eps is None:
|
706 |
+
raise RuntimeError('The router does not have moe_jitter_eps set.')
|
707 |
+
low = 1.0 - self.moe_jitter_eps
|
708 |
+
high = 1.0 + self.moe_jitter_eps
|
709 |
+
noise = torch.rand(x.size(), dtype=x.dtype, device=x.device)
|
710 |
+
return low + noise * (high - low)
|
711 |
+
|
712 |
+
def forward(
|
713 |
+
self, x: torch.Tensor
|
714 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
|
715 |
+
if self.training and self.moe_jitter_eps is not None:
|
716 |
+
x = x * self.jitter(x)
|
717 |
+
|
718 |
+
weights = self.layer(x.view(-1,
|
719 |
+
x.shape[-1])).softmax(dim=-1,
|
720 |
+
dtype=torch.float32)
|
721 |
+
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
|
722 |
+
|
723 |
+
if self.moe_normalize_expert_weights:
|
724 |
+
top_weights = top_weights / torch.norm(
|
725 |
+
top_weights,
|
726 |
+
p=self.moe_normalize_expert_weights,
|
727 |
+
dim=-1,
|
728 |
+
keepdim=True)
|
729 |
+
|
730 |
+
if self.uniform_expert_assignment:
|
731 |
+
with torch.no_grad():
|
732 |
+
uniform_tensor = torch.arange(
|
733 |
+
0,
|
734 |
+
top_experts.numel(),
|
735 |
+
device=top_experts.device,
|
736 |
+
dtype=top_experts.dtype) % self.moe_num_experts
|
737 |
+
top_experts = uniform_tensor.reshape(top_experts.shape)
|
738 |
+
# Note, weights and top_weights are not changed
|
739 |
+
|
740 |
+
weights = weights.to(x.dtype)
|
741 |
+
top_weights = top_weights.to(x.dtype)
|
742 |
+
return weights, top_weights, top_experts # type: ignore
|
743 |
+
|
744 |
+
|
745 |
+
class DbrxMLP(nn.Module):
|
746 |
+
|
747 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int, ffn_act_fn: dict):
|
748 |
+
super().__init__()
|
749 |
+
|
750 |
+
self.w1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
|
751 |
+
self.v1 = nn.Linear(hidden_size, ffn_hidden_size, bias=False)
|
752 |
+
self.w2 = nn.Linear(ffn_hidden_size, hidden_size, bias=False)
|
753 |
+
self.activation_fn = resolve_ffn_act_fn(ffn_act_fn)
|
754 |
+
|
755 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
756 |
+
|
757 |
+
return self.w2(self.activation_fn(self.w1(x)) * self.v1(x))
|
758 |
+
|
759 |
+
|
760 |
+
class DbrxExperts(nn.Module):
|
761 |
+
|
762 |
+
def __init__(self, hidden_size: int, ffn_hidden_size: int,
|
763 |
+
moe_num_experts: int, ffn_act_fn: dict):
|
764 |
+
super().__init__()
|
765 |
+
self.moe_num_experts = moe_num_experts
|
766 |
+
self.mlp = nn.ModuleList([DbrxMLP(hidden_size, ffn_hidden_size, ffn_act_fn) for _ in range(moe_num_experts)])
|
767 |
+
|
768 |
+
def forward(self, x: torch.Tensor, weights: torch.Tensor,
|
769 |
+
top_weights: torch.Tensor,
|
770 |
+
top_experts: torch.LongTensor) -> torch.Tensor:
|
771 |
+
bsz, q_len, hidden_size = x.shape
|
772 |
+
x = x.view(-1, hidden_size)
|
773 |
+
out = torch.zeros_like(x)
|
774 |
+
|
775 |
+
expert_mask = nn.functional.one_hot(
|
776 |
+
top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
|
777 |
+
for expert_idx in range(0, self.moe_num_experts):
|
778 |
+
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
|
779 |
+
if token_idx.shape[0] == 0:
|
780 |
+
continue
|
781 |
+
|
782 |
+
expert_tokens = x[None, token_idx].reshape(-1, hidden_size)
|
783 |
+
expert_out = self.mlp[expert_idx](expert_tokens) * top_weights[token_idx, topk_idx, None]
|
784 |
+
|
785 |
+
out.index_add_(0, token_idx, expert_out)
|
786 |
+
|
787 |
+
out = out.reshape(bsz, q_len, hidden_size)
|
788 |
+
return out
|
789 |
+
|
790 |
+
|
791 |
+
class DbrxFFN(nn.Module):
|
792 |
+
|
793 |
+
def __init__(self, hidden_size: int, ffn_config: DbrxFFNConfig):
|
794 |
+
super().__init__()
|
795 |
+
|
796 |
+
self.router = DbrxRouter(
|
797 |
+
hidden_size,
|
798 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
799 |
+
moe_top_k=ffn_config.moe_top_k,
|
800 |
+
moe_jitter_eps=ffn_config.moe_jitter_eps,
|
801 |
+
moe_normalize_expert_weights=ffn_config.
|
802 |
+
moe_normalize_expert_weights,
|
803 |
+
uniform_expert_assignment=ffn_config.uniform_expert_assignment,
|
804 |
+
)
|
805 |
+
|
806 |
+
self.experts = DbrxExperts(
|
807 |
+
hidden_size=hidden_size,
|
808 |
+
ffn_hidden_size=ffn_config.ffn_hidden_size,
|
809 |
+
moe_num_experts=ffn_config.moe_num_experts,
|
810 |
+
ffn_act_fn=ffn_config.ffn_act_fn,
|
811 |
+
)
|
812 |
+
|
813 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
814 |
+
weights, top_weights, top_experts = self.router(x)
|
815 |
+
out = self.experts(x, weights, top_weights, top_experts)
|
816 |
+
return out, weights
|
817 |
+
|
818 |
+
|
819 |
+
class DbrxBlock(nn.Module):
|
820 |
+
|
821 |
+
def __init__(self, config: DbrxConfig, block_idx: int):
|
822 |
+
super().__init__()
|
823 |
+
self.hidden_size = config.d_model
|
824 |
+
self.resid_pdrop = config.resid_pdrop
|
825 |
+
self.block_idx = block_idx
|
826 |
+
self.norm_attn_norm = DbrxNormAttentionNorm(
|
827 |
+
hidden_size=config.d_model,
|
828 |
+
num_heads=config.n_heads,
|
829 |
+
max_position_embeddings=config.max_seq_len,
|
830 |
+
resid_pdrop=config.resid_pdrop,
|
831 |
+
attn_implementation=config._attn_implementation,
|
832 |
+
attn_config=config.attn_config,
|
833 |
+
block_idx=block_idx,
|
834 |
+
)
|
835 |
+
self.ffn = DbrxFFN(hidden_size=config.d_model,
|
836 |
+
ffn_config=config.ffn_config)
|
837 |
+
|
838 |
+
def forward(
|
839 |
+
self,
|
840 |
+
hidden_states: torch.Tensor,
|
841 |
+
position_ids: torch.LongTensor,
|
842 |
+
attention_mask: Optional[torch.Tensor] = None,
|
843 |
+
past_key_value: Optional[Cache] = None,
|
844 |
+
output_attentions: Optional[bool] = False,
|
845 |
+
output_router_logits: Optional[bool] = False,
|
846 |
+
use_cache: Optional[bool] = False,
|
847 |
+
cache_position: Optional[torch.LongTensor] = None,
|
848 |
+
**kwargs: Any,
|
849 |
+
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, Optional[torch.Tensor]],
|
850 |
+
Tuple[torch.Tensor, Optional[Cache]], Tuple[
|
851 |
+
torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
|
852 |
+
Tuple[torch.Tensor, Optional[torch.Tensor],
|
853 |
+
Optional[torch.Tensor]], Tuple[
|
854 |
+
torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
|
855 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache],
|
856 |
+
Optional[torch.Tensor]],]:
|
857 |
+
"""Forward function for DbrxBlock.
|
858 |
+
|
859 |
+
Args:
|
860 |
+
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
861 |
+
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
|
862 |
+
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
|
863 |
+
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
|
864 |
+
if default attention is used.
|
865 |
+
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
|
866 |
+
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
|
867 |
+
attention layers. See `attentions` under returned tensors for more detail.
|
868 |
+
output_router_logits (`bool`, optional): Whether or not to return the router logits.
|
869 |
+
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
|
870 |
+
returned and can be used to speed up decoding (see `past_key_values`).
|
871 |
+
cache_position (`torch.LongTensor`, optional): position ids of the cache
|
872 |
+
"""
|
873 |
+
if 'padding_mask' in kwargs:
|
874 |
+
warnings.warn(
|
875 |
+
'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
|
876 |
+
)
|
877 |
+
|
878 |
+
# Norm + Attention + Norm
|
879 |
+
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
|
880 |
+
hidden_states=hidden_states,
|
881 |
+
attention_mask=attention_mask,
|
882 |
+
position_ids=position_ids,
|
883 |
+
past_key_value=past_key_value,
|
884 |
+
output_attentions=output_attentions,
|
885 |
+
use_cache=use_cache,
|
886 |
+
cache_position=cache_position,
|
887 |
+
**kwargs,
|
888 |
+
)
|
889 |
+
|
890 |
+
# Fully Connected
|
891 |
+
hidden_states, router_logits = self.ffn(hidden_states)
|
892 |
+
hidden_states = nn.functional.dropout(hidden_states,
|
893 |
+
p=self.resid_pdrop,
|
894 |
+
training=self.training)
|
895 |
+
hidden_states = resid_states + hidden_states
|
896 |
+
|
897 |
+
outputs = (hidden_states,)
|
898 |
+
|
899 |
+
if output_attentions:
|
900 |
+
outputs += (self_attn_weights,)
|
901 |
+
|
902 |
+
if use_cache:
|
903 |
+
outputs += (present_key_value,)
|
904 |
+
|
905 |
+
if output_router_logits:
|
906 |
+
outputs += (router_logits,)
|
907 |
+
|
908 |
+
return outputs
|
909 |
+
|
910 |
+
|
911 |
+
class DbrxPreTrainedModel(PreTrainedModel):
|
912 |
+
config_class = DbrxConfig
|
913 |
+
base_model_prefix = 'transformer'
|
914 |
+
supports_gradient_checkpointing = True
|
915 |
+
_no_split_modules = ['DbrxBlock']
|
916 |
+
_skip_keys_device_placement = ['past_key_values']
|
917 |
+
_supports_flash_attn_2 = True
|
918 |
+
_supports_sdpa = False
|
919 |
+
_supports_cache_class = True
|
920 |
+
|
921 |
+
def _init_weights(self, module: nn.Module):
|
922 |
+
std = self.config.initializer_range
|
923 |
+
if isinstance(module, nn.Linear):
|
924 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
925 |
+
if module.bias is not None:
|
926 |
+
module.bias.data.zero_()
|
927 |
+
elif isinstance(module, nn.Embedding):
|
928 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
929 |
+
if module.padding_idx is not None:
|
930 |
+
module.weight.data[module.padding_idx].zero_()
|
931 |
+
elif isinstance(module, nn.LayerNorm):
|
932 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
933 |
+
if module.bias is not None:
|
934 |
+
module.bias.data.zero_()
|
935 |
+
|
936 |
+
def _setup_cache(self, cache_cls: Any, max_batch_size: int,
|
937 |
+
max_cache_len: int): # TODO: how to set var type of class?
|
938 |
+
if self.config._attn_implementation == 'flash_attention_2' and cache_cls == StaticCache:
|
939 |
+
raise ValueError(
|
940 |
+
'`static` cache implementation is not compatible with ' +
|
941 |
+
'`attn_implementation==flash_attention_2`. Make sure to use ' +
|
942 |
+
'`spda` in the mean time and open an issue at https://github.com/huggingface/transformers.'
|
943 |
+
)
|
944 |
+
|
945 |
+
for block in self.transformer.blocks:
|
946 |
+
device = block.norm_attn_norm.norm_1.weight.device
|
947 |
+
if hasattr(self.config, '_pre_quantization_dtype'):
|
948 |
+
dtype = self.config._pre_quantization_dtype
|
949 |
+
else:
|
950 |
+
dtype = block.norm_attn_norm.attn.out_proj.weight.dtype
|
951 |
+
block.norm_attn_norm.attn.past_key_value = cache_cls(self.config,
|
952 |
+
max_batch_size,
|
953 |
+
max_cache_len,
|
954 |
+
device=device,
|
955 |
+
dtype=dtype)
|
956 |
+
|
957 |
+
def _reset_cache(self):
|
958 |
+
for block in self.transformer.blocks:
|
959 |
+
block.norm_attn_norm.attn.past_key_value = None
|
960 |
+
|
961 |
+
|
962 |
+
class DbrxModel(DbrxPreTrainedModel):
|
963 |
+
"""Transformer decoder consisting of *config.num_hidden_layers*
|
964 |
+
|
965 |
+
[`DbrxBlock`] layers.
|
966 |
+
|
967 |
+
Args:
|
968 |
+
config: DbrxConfig
|
969 |
+
"""
|
970 |
+
|
971 |
+
def __init__(self, config: DbrxConfig):
|
972 |
+
super().__init__(config)
|
973 |
+
self.padding_idx = config.pad_token_id
|
974 |
+
self.vocab_size = config.vocab_size
|
975 |
+
self.emb_pdrop = config.emb_pdrop
|
976 |
+
|
977 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_model,
|
978 |
+
self.padding_idx)
|
979 |
+
self.blocks = nn.ModuleList([
|
980 |
+
DbrxBlock(config, block_idx) for block_idx in range(config.n_layers)
|
981 |
+
])
|
982 |
+
self.norm_f = nn.LayerNorm(config.d_model, bias=False)
|
983 |
+
self.gradient_checkpointing = False
|
984 |
+
|
985 |
+
# Initialize weights and apply final processing
|
986 |
+
self.post_init()
|
987 |
+
|
988 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
989 |
+
return self.wte
|
990 |
+
|
991 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
992 |
+
self.wte = value
|
993 |
+
|
994 |
+
def _autocast_input_embeddings(self,
|
995 |
+
inputs_embeds: torch.Tensor) -> torch.Tensor:
|
996 |
+
if inputs_embeds.device.type == 'cuda' and torch.is_autocast_enabled():
|
997 |
+
return inputs_embeds.to(dtype=torch.get_autocast_gpu_dtype())
|
998 |
+
elif inputs_embeds.device.type == 'cpu' and torch.is_autocast_cpu_enabled(
|
999 |
+
):
|
1000 |
+
return inputs_embeds.to(dtype=torch.get_autocast_cpu_dtype())
|
1001 |
+
else:
|
1002 |
+
return inputs_embeds
|
1003 |
+
|
1004 |
+
def forward(
|
1005 |
+
self,
|
1006 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1007 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1008 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1009 |
+
past_key_values: Optional[Cache] = None,
|
1010 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1011 |
+
use_cache: Optional[bool] = None,
|
1012 |
+
output_attentions: Optional[bool] = None,
|
1013 |
+
output_hidden_states: Optional[bool] = None,
|
1014 |
+
output_router_logits: Optional[bool] = None,
|
1015 |
+
return_dict: Optional[bool] = None,
|
1016 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1017 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
1018 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1019 |
+
output_hidden_states = (output_hidden_states
|
1020 |
+
if output_hidden_states is not None else
|
1021 |
+
self.config.output_hidden_states)
|
1022 |
+
output_router_logits = (output_router_logits
|
1023 |
+
if output_router_logits is not None else
|
1024 |
+
self.config.output_router_logits)
|
1025 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1026 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1027 |
+
|
1028 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1029 |
+
raise ValueError(
|
1030 |
+
'You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one'
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1034 |
+
logger.warning_once(
|
1035 |
+
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.'
|
1036 |
+
)
|
1037 |
+
use_cache = False
|
1038 |
+
|
1039 |
+
if inputs_embeds is None:
|
1040 |
+
inputs_embeds = self.wte(input_ids)
|
1041 |
+
|
1042 |
+
inputs_embeds = self._autocast_input_embeddings(
|
1043 |
+
inputs_embeds) # type: ignore
|
1044 |
+
inputs_embeds = nn.functional.dropout(inputs_embeds,
|
1045 |
+
p=self.emb_pdrop,
|
1046 |
+
training=self.training)
|
1047 |
+
|
1048 |
+
past_seen_tokens = 0
|
1049 |
+
if use_cache: # kept for BC (cache positions)
|
1050 |
+
if not isinstance(past_key_values, StaticCache):
|
1051 |
+
past_key_values = DynamicCache.from_legacy_cache(
|
1052 |
+
past_key_values)
|
1053 |
+
past_seen_tokens = past_key_values.get_seq_length( # type: ignore
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
if cache_position is None:
|
1057 |
+
if isinstance(past_key_values, StaticCache):
|
1058 |
+
raise ValueError(
|
1059 |
+
'cache_position is a required argument when using StaticCache.'
|
1060 |
+
)
|
1061 |
+
cache_position = torch.arange( # type: ignore
|
1062 |
+
past_seen_tokens,
|
1063 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
1064 |
+
device=inputs_embeds.device)
|
1065 |
+
|
1066 |
+
if position_ids is None:
|
1067 |
+
position_ids = cache_position.unsqueeze(0) # type: ignore
|
1068 |
+
|
1069 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds,
|
1070 |
+
cache_position) # type: ignore
|
1071 |
+
|
1072 |
+
# embed positions
|
1073 |
+
hidden_states = inputs_embeds
|
1074 |
+
|
1075 |
+
# decoder layers
|
1076 |
+
all_hidden_states = () if output_hidden_states else None
|
1077 |
+
all_self_attns = () if output_attentions else None
|
1078 |
+
all_router_logits = () if output_router_logits else None
|
1079 |
+
next_decoder_cache = None
|
1080 |
+
|
1081 |
+
for block in self.blocks:
|
1082 |
+
if output_hidden_states:
|
1083 |
+
all_hidden_states += (hidden_states,) # type: ignore
|
1084 |
+
|
1085 |
+
if self.gradient_checkpointing and self.training:
|
1086 |
+
block_outputs = self._gradient_checkpointing_func(
|
1087 |
+
block.__call__,
|
1088 |
+
hidden_states,
|
1089 |
+
attention_mask=causal_mask,
|
1090 |
+
position_ids=position_ids,
|
1091 |
+
past_key_values=past_key_values,
|
1092 |
+
output_attentions=output_attentions,
|
1093 |
+
output_router_logits=output_router_logits,
|
1094 |
+
use_cache=use_cache,
|
1095 |
+
cache_position=cache_position,
|
1096 |
+
)
|
1097 |
+
else:
|
1098 |
+
block_outputs = block(
|
1099 |
+
hidden_states,
|
1100 |
+
attention_mask=causal_mask,
|
1101 |
+
position_ids=position_ids,
|
1102 |
+
past_key_value=past_key_values,
|
1103 |
+
output_attentions=output_attentions,
|
1104 |
+
output_router_logits=output_router_logits,
|
1105 |
+
use_cache=use_cache,
|
1106 |
+
cache_position=cache_position,
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
hidden_states = block_outputs[0]
|
1110 |
+
|
1111 |
+
if use_cache:
|
1112 |
+
next_decoder_cache = block_outputs[
|
1113 |
+
2 if output_attentions else 1]
|
1114 |
+
|
1115 |
+
if output_attentions:
|
1116 |
+
all_self_attns += (block_outputs[1],) # type: ignore
|
1117 |
+
|
1118 |
+
if output_router_logits:
|
1119 |
+
all_router_logits += (block_outputs[-1],) # type: ignore
|
1120 |
+
|
1121 |
+
hidden_states = self.norm_f(hidden_states)
|
1122 |
+
|
1123 |
+
# add hidden states from the last decoder layer
|
1124 |
+
if output_hidden_states:
|
1125 |
+
all_hidden_states += (hidden_states,) # type: ignore
|
1126 |
+
|
1127 |
+
next_cache = None
|
1128 |
+
if use_cache:
|
1129 |
+
next_cache = (
|
1130 |
+
next_decoder_cache.to_legacy_cache() # type: ignore
|
1131 |
+
if isinstance(next_decoder_cache, Cache) else
|
1132 |
+
next_decoder_cache)
|
1133 |
+
if not return_dict:
|
1134 |
+
return tuple(v for v in [
|
1135 |
+
hidden_states, next_cache, all_hidden_states, all_self_attns,
|
1136 |
+
all_router_logits
|
1137 |
+
] if v is not None)
|
1138 |
+
return MoeModelOutputWithPast(
|
1139 |
+
last_hidden_state=hidden_states,
|
1140 |
+
past_key_values=next_cache,
|
1141 |
+
hidden_states=all_hidden_states,
|
1142 |
+
attentions=all_self_attns,
|
1143 |
+
router_logits=all_router_logits,
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1147 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1148 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1149 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1150 |
+
def _update_causal_mask(
|
1151 |
+
self, attention_mask: Optional[torch.Tensor],
|
1152 |
+
input_tensor: torch.Tensor,
|
1153 |
+
cache_position: torch.Tensor) -> Optional[torch.Tensor]:
|
1154 |
+
if self.config._attn_implementation == 'flash_attention_2':
|
1155 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1156 |
+
return attention_mask
|
1157 |
+
return None
|
1158 |
+
|
1159 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1160 |
+
min_dtype = torch.finfo(dtype).min
|
1161 |
+
sequence_length = input_tensor.shape[1]
|
1162 |
+
if hasattr(self.blocks[0].norm_attn_norm.attn,
|
1163 |
+
'past_key_value'): # static cache
|
1164 |
+
target_length = self.config.max_position_embeddings
|
1165 |
+
else: # dynamic cache
|
1166 |
+
target_length = (attention_mask.shape[-1] if isinstance(
|
1167 |
+
attention_mask, torch.Tensor) else cache_position[-1] + 1)
|
1168 |
+
target_length = int(target_length)
|
1169 |
+
|
1170 |
+
causal_mask = torch.full((sequence_length, target_length),
|
1171 |
+
fill_value=min_dtype,
|
1172 |
+
dtype=dtype,
|
1173 |
+
device=device)
|
1174 |
+
if sequence_length != 1:
|
1175 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1176 |
+
causal_mask *= torch.arange(
|
1177 |
+
target_length, device=device) > cache_position.reshape(-1, 1)
|
1178 |
+
causal_mask = causal_mask[None,
|
1179 |
+
None, :, :].expand(input_tensor.shape[0], 1,
|
1180 |
+
-1, -1)
|
1181 |
+
if attention_mask is not None:
|
1182 |
+
causal_mask = causal_mask.clone(
|
1183 |
+
) # copy to contiguous memory for in-place edit
|
1184 |
+
if attention_mask.dim() == 2:
|
1185 |
+
mask_length = attention_mask.shape[-1]
|
1186 |
+
padding_mask = causal_mask[..., :mask_length].eq(
|
1187 |
+
0.0) * attention_mask[:, None, None, :].eq(0.0)
|
1188 |
+
causal_mask[..., :mask_length] = causal_mask[
|
1189 |
+
..., :mask_length].masked_fill(padding_mask, min_dtype)
|
1190 |
+
elif attention_mask.dim() == 4:
|
1191 |
+
# backwards compatibility: we allow passing a 4D attention mask shorter than the input length with
|
1192 |
+
# cache. In that case, the 4D attention mask attends to the newest tokens only.
|
1193 |
+
if attention_mask.shape[
|
1194 |
+
-2] < cache_position[0] + sequence_length:
|
1195 |
+
offset = cache_position[0]
|
1196 |
+
else:
|
1197 |
+
offset = 0
|
1198 |
+
mask_shape = attention_mask.shape
|
1199 |
+
mask_slice = (attention_mask.eq(0.0)).to(
|
1200 |
+
dtype=dtype) * min_dtype
|
1201 |
+
causal_mask[:mask_shape[0], :mask_shape[1],
|
1202 |
+
offset:mask_shape[2] +
|
1203 |
+
offset, :mask_shape[3]] = mask_slice
|
1204 |
+
|
1205 |
+
if (self.config._attn_implementation == 'sdpa' and
|
1206 |
+
attention_mask is not None and
|
1207 |
+
attention_mask.device.type == 'cuda'):
|
1208 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1209 |
+
is_tracing = (
|
1210 |
+
torch.jit.is_tracing() or
|
1211 |
+
isinstance(input_tensor, torch.fx.Proxy) or # type: ignore
|
1212 |
+
(hasattr(torch, '_dynamo') and torch._dynamo.is_compiling()))
|
1213 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1214 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1215 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1216 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1217 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
1218 |
+
causal_mask, min_dtype)
|
1219 |
+
|
1220 |
+
return causal_mask
|
1221 |
+
|
1222 |
+
|
1223 |
+
class DbrxForCausalLM(DbrxPreTrainedModel):
|
1224 |
+
|
1225 |
+
def __init__(self, config: DbrxConfig):
|
1226 |
+
super().__init__(config)
|
1227 |
+
self.transformer = DbrxModel(config)
|
1228 |
+
self.vocab_size = config.vocab_size
|
1229 |
+
self.lm_head = nn.Linear(config.hidden_size,
|
1230 |
+
config.vocab_size,
|
1231 |
+
bias=False)
|
1232 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1233 |
+
self.num_experts = config.ffn_config.moe_num_experts
|
1234 |
+
self.num_experts_per_tok = config.ffn_config.moe_top_k
|
1235 |
+
|
1236 |
+
# Initialize weights and apply final processing
|
1237 |
+
self.post_init()
|
1238 |
+
|
1239 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
1240 |
+
return self.transformer.get_input_embeddings()
|
1241 |
+
|
1242 |
+
def set_input_embeddings(self, value: nn.Embedding):
|
1243 |
+
self.transformer.set_input_embeddings(value)
|
1244 |
+
|
1245 |
+
def get_output_embeddings(self) -> nn.Linear:
|
1246 |
+
return self.lm_head
|
1247 |
+
|
1248 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear):
|
1249 |
+
self.lm_head = new_embeddings
|
1250 |
+
|
1251 |
+
def set_decoder(self, decoder: DbrxModel):
|
1252 |
+
self.transformer = decoder
|
1253 |
+
|
1254 |
+
def get_decoder(self) -> DbrxModel:
|
1255 |
+
return self.transformer
|
1256 |
+
|
1257 |
+
def forward(
|
1258 |
+
self,
|
1259 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1260 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1261 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1262 |
+
past_key_values: Optional[Cache] = None,
|
1263 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1264 |
+
labels: Optional[torch.LongTensor] = None,
|
1265 |
+
use_cache: Optional[bool] = None,
|
1266 |
+
output_attentions: Optional[bool] = None,
|
1267 |
+
output_hidden_states: Optional[bool] = None,
|
1268 |
+
output_router_logits: Optional[bool] = None,
|
1269 |
+
return_dict: Optional[bool] = None,
|
1270 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1271 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
1272 |
+
r"""Forward function for causal language modeling.
|
1273 |
+
|
1274 |
+
Example:
|
1275 |
+
```python
|
1276 |
+
>>> from transformers import AutoTokenizer, DbrxForCausalLM
|
1277 |
+
|
1278 |
+
>>> model = DbrxForCausalLM.from_pretrained("databricks/dbrx")
|
1279 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx")
|
1280 |
+
|
1281 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1282 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1283 |
+
|
1284 |
+
>>> # Generate
|
1285 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1286 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1287 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1288 |
+
```
|
1289 |
+
"""
|
1290 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1291 |
+
output_hidden_states = (output_hidden_states
|
1292 |
+
if output_hidden_states is not None else
|
1293 |
+
self.config.output_hidden_states)
|
1294 |
+
output_router_logits = (output_router_logits
|
1295 |
+
if output_router_logits is not None else
|
1296 |
+
self.config.output_router_logits)
|
1297 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1298 |
+
|
1299 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1300 |
+
outputs = self.transformer(
|
1301 |
+
input_ids=input_ids,
|
1302 |
+
attention_mask=attention_mask,
|
1303 |
+
position_ids=position_ids,
|
1304 |
+
past_key_values=past_key_values,
|
1305 |
+
inputs_embeds=inputs_embeds,
|
1306 |
+
use_cache=use_cache,
|
1307 |
+
output_attentions=output_attentions,
|
1308 |
+
output_hidden_states=output_hidden_states,
|
1309 |
+
output_router_logits=output_router_logits,
|
1310 |
+
return_dict=return_dict,
|
1311 |
+
cache_position=cache_position,
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
hidden_states = outputs[0]
|
1315 |
+
logits = self.lm_head(hidden_states)
|
1316 |
+
|
1317 |
+
loss = None
|
1318 |
+
if labels is not None:
|
1319 |
+
# Shift so that tokens < n predict n
|
1320 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1321 |
+
shift_labels = labels[..., 1:].contiguous()
|
1322 |
+
# Flatten the tokens
|
1323 |
+
loss_fct = nn.CrossEntropyLoss()
|
1324 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1325 |
+
shift_labels = shift_labels.view(-1)
|
1326 |
+
# Enable model parallelism
|
1327 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1328 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1329 |
+
|
1330 |
+
aux_loss = None
|
1331 |
+
if output_router_logits:
|
1332 |
+
aux_loss = load_balancing_loss_func(
|
1333 |
+
outputs.router_logits if return_dict else outputs[-1],
|
1334 |
+
self.num_experts,
|
1335 |
+
self.num_experts_per_tok,
|
1336 |
+
attention_mask,
|
1337 |
+
)
|
1338 |
+
if labels is not None and loss is not None:
|
1339 |
+
loss += self.router_aux_loss_coef * aux_loss.to(
|
1340 |
+
loss.device) # make sure to reside in the same device
|
1341 |
+
|
1342 |
+
if not return_dict:
|
1343 |
+
output = (logits,) + outputs[1:]
|
1344 |
+
return (loss,) + output if loss is not None else output
|
1345 |
+
|
1346 |
+
return MoeCausalLMOutputWithPast(
|
1347 |
+
loss=loss,
|
1348 |
+
aux_loss=aux_loss,
|
1349 |
+
logits=logits,
|
1350 |
+
past_key_values=outputs.past_key_values,
|
1351 |
+
hidden_states=outputs.hidden_states,
|
1352 |
+
attentions=outputs.attentions,
|
1353 |
+
router_logits=outputs.router_logits,
|
1354 |
+
)
|
1355 |
+
|
1356 |
+
def prepare_inputs_for_generation(
|
1357 |
+
self,
|
1358 |
+
input_ids: torch.Tensor,
|
1359 |
+
past_key_values: Optional[Cache] = None,
|
1360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1361 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1362 |
+
**kwargs: Any) -> Dict[str, Any]:
|
1363 |
+
past_length = 0
|
1364 |
+
if past_key_values is not None:
|
1365 |
+
if isinstance(past_key_values, Cache):
|
1366 |
+
cache_length = past_key_values.get_seq_length()
|
1367 |
+
past_length = past_key_values.seen_tokens
|
1368 |
+
max_cache_length = past_key_values.get_max_length()
|
1369 |
+
else:
|
1370 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1371 |
+
max_cache_length = None
|
1372 |
+
|
1373 |
+
# Keep only the unprocessed tokens:
|
1374 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1375 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1376 |
+
# input)
|
1377 |
+
if attention_mask is not None and attention_mask.shape[
|
1378 |
+
1] > input_ids.shape[1]:
|
1379 |
+
input_ids = input_ids[:,
|
1380 |
+
-(attention_mask.shape[1] - past_length):]
|
1381 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1382 |
+
# input_ids based on the past_length.
|
1383 |
+
elif past_length < input_ids.shape[1]:
|
1384 |
+
input_ids = input_ids[:, past_length:]
|
1385 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1386 |
+
|
1387 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1388 |
+
if (max_cache_length is not None and attention_mask is not None and
|
1389 |
+
cache_length + input_ids.shape[1] > max_cache_length):
|
1390 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1391 |
+
|
1392 |
+
position_ids = kwargs.get('position_ids', None)
|
1393 |
+
if attention_mask is not None and position_ids is None:
|
1394 |
+
# create position_ids on the fly for batch generation
|
1395 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1396 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1397 |
+
if past_key_values:
|
1398 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1399 |
+
|
1400 |
+
if self.generation_config.cache_implementation == 'static':
|
1401 |
+
# generation with static cache
|
1402 |
+
cache_position = kwargs.get('cache_position', None)
|
1403 |
+
if cache_position is None:
|
1404 |
+
past_length = 0
|
1405 |
+
else:
|
1406 |
+
past_length = cache_position[-1] + 1
|
1407 |
+
input_ids = input_ids[:, past_length:]
|
1408 |
+
position_ids = position_ids[:,
|
1409 |
+
past_length:] if position_ids is not None else None
|
1410 |
+
|
1411 |
+
# TODO @gante we should only keep a `cache_position` in generate, and do +=1.
|
1412 |
+
# same goes for position ids. Could also help with continued generation.
|
1413 |
+
input_length = position_ids.shape[
|
1414 |
+
-1] if position_ids is not None else input_ids.shape[-1]
|
1415 |
+
cache_position = torch.arange(past_length,
|
1416 |
+
past_length + input_length,
|
1417 |
+
device=input_ids.device)
|
1418 |
+
position_ids = position_ids.contiguous(
|
1419 |
+
) if position_ids is not None else None
|
1420 |
+
|
1421 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1422 |
+
if inputs_embeds is not None and past_key_values is None:
|
1423 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
1424 |
+
else:
|
1425 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1426 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1427 |
+
# TODO: use `next_tokens` directly instead.
|
1428 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
1429 |
+
|
1430 |
+
model_inputs.update(
|
1431 |
+
{ # type: ignore
|
1432 |
+
'position_ids': position_ids,
|
1433 |
+
'cache_position': cache_position,
|
1434 |
+
'past_key_values': past_key_values,
|
1435 |
+
'use_cache': kwargs.get('use_cache'),
|
1436 |
+
'attention_mask': attention_mask,
|
1437 |
+
}
|
1438 |
+
)
|
1439 |
+
return model_inputs
|
1440 |
+
|
1441 |
+
@staticmethod
|
1442 |
+
def _reorder_cache(past_key_values: Cache, beam_idx: torch.LongTensor):
|
1443 |
+
reordered_past = ()
|
1444 |
+
for layer_past in past_key_values:
|
1445 |
+
reordered_past += (tuple(
|
1446 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1447 |
+
for past_state in layer_past),)
|
1448 |
+
return reordered_past
|