Lmprato commited on
Commit
afadbcc
·
verified ·
1 Parent(s): d7abb92

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9b763aa53df3cf73f315df97fa42a862cf33fd96064ce94e321a6adc8de54d2
3
+ size 13648432
checkpoint-2502/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-v0.1
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-2502/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-2502/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9b763aa53df3cf73f315df97fa42a862cf33fd96064ce94e321a6adc8de54d2
3
+ size 13648432
checkpoint-2502/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f29745d74d4b5d8e1f6f1e280490c87054185935559a9d7ecd9ad5f6f13990b3
3
+ size 27370618
checkpoint-2502/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e5f139a6d2831b6c282a41ce3ce4857d295f222862080c530373383a775c39
3
+ size 14244
checkpoint-2502/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0e0098372a08941f08aa2f1550936cecb614f9cb41b113264f6c73b5e95041e
3
+ size 988
checkpoint-2502/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27a02836d8dafc05e73735c50cb330164e9cee4f9660fc5331756e49b47fdd2e
3
+ size 1064
checkpoint-2502/trainer_state.json ADDED
@@ -0,0 +1,1791 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.16163970530033112,
3
+ "best_model_checkpoint": "./fine_tuned_mistral/checkpoint-2502",
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 2502,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.003996802557953637,
13
+ "grad_norm": 187.7821502685547,
14
+ "learning_rate": 0.00019968025579536372,
15
+ "loss": 8.0944,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.007993605115907274,
20
+ "grad_norm": 0.9809202551841736,
21
+ "learning_rate": 0.00019888089528377297,
22
+ "loss": 0.5985,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.011990407673860911,
27
+ "grad_norm": 1.3078651428222656,
28
+ "learning_rate": 0.00019808153477218226,
29
+ "loss": 0.2975,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.01598721023181455,
34
+ "grad_norm": 1.6677987575531006,
35
+ "learning_rate": 0.00019728217426059154,
36
+ "loss": 0.4915,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.019984012789768184,
41
+ "grad_norm": 1.3078293800354004,
42
+ "learning_rate": 0.00019648281374900082,
43
+ "loss": 0.1599,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.023980815347721823,
48
+ "grad_norm": 0.7252454161643982,
49
+ "learning_rate": 0.00019568345323741008,
50
+ "loss": 0.2224,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.027977617905675458,
55
+ "grad_norm": 0.7883257865905762,
56
+ "learning_rate": 0.00019488409272581936,
57
+ "loss": 0.2254,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.0319744204636291,
62
+ "grad_norm": 0.2993629276752472,
63
+ "learning_rate": 0.00019408473221422861,
64
+ "loss": 0.2191,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.03597122302158273,
69
+ "grad_norm": 1.1389100551605225,
70
+ "learning_rate": 0.0001932853717026379,
71
+ "loss": 0.2474,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.03996802557953637,
76
+ "grad_norm": 0.1363106220960617,
77
+ "learning_rate": 0.00019248601119104715,
78
+ "loss": 0.0983,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.04396482813749001,
83
+ "grad_norm": 0.2188768833875656,
84
+ "learning_rate": 0.00019168665067945644,
85
+ "loss": 0.1767,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.047961630695443645,
90
+ "grad_norm": 0.5281928777694702,
91
+ "learning_rate": 0.00019088729016786572,
92
+ "loss": 0.2052,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.05195843325339728,
97
+ "grad_norm": 0.716292679309845,
98
+ "learning_rate": 0.000190087929656275,
99
+ "loss": 0.2613,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.055955235811350916,
104
+ "grad_norm": 0.6606540679931641,
105
+ "learning_rate": 0.00018928856914468426,
106
+ "loss": 0.2156,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.05995203836930456,
111
+ "grad_norm": 0.7895898222923279,
112
+ "learning_rate": 0.00018848920863309354,
113
+ "loss": 0.1875,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.0639488409272582,
118
+ "grad_norm": 1.9056642055511475,
119
+ "learning_rate": 0.00018768984812150282,
120
+ "loss": 0.1542,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.06794564348521183,
125
+ "grad_norm": 0.6912965774536133,
126
+ "learning_rate": 0.00018689048760991208,
127
+ "loss": 0.1603,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.07194244604316546,
132
+ "grad_norm": 0.33341923356056213,
133
+ "learning_rate": 0.00018609112709832136,
134
+ "loss": 0.199,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.0759392486011191,
139
+ "grad_norm": 0.30143648386001587,
140
+ "learning_rate": 0.00018529176658673062,
141
+ "loss": 0.1626,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.07993605115907274,
146
+ "grad_norm": 0.5107619166374207,
147
+ "learning_rate": 0.0001844924060751399,
148
+ "loss": 0.2186,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.08393285371702638,
153
+ "grad_norm": 0.6437661647796631,
154
+ "learning_rate": 0.00018369304556354915,
155
+ "loss": 0.1858,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.08792965627498002,
160
+ "grad_norm": 1.3543767929077148,
161
+ "learning_rate": 0.00018289368505195846,
162
+ "loss": 0.2575,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.09192645883293366,
167
+ "grad_norm": 0.10899212956428528,
168
+ "learning_rate": 0.00018209432454036772,
169
+ "loss": 0.236,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.09592326139088729,
174
+ "grad_norm": 0.8948803544044495,
175
+ "learning_rate": 0.000181294964028777,
176
+ "loss": 0.2171,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.09992006394884093,
181
+ "grad_norm": 0.8165796995162964,
182
+ "learning_rate": 0.00018049560351718626,
183
+ "loss": 0.1654,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.10391686650679456,
188
+ "grad_norm": 0.8842654824256897,
189
+ "learning_rate": 0.00017969624300559554,
190
+ "loss": 0.2257,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.1079136690647482,
195
+ "grad_norm": 0.6311301589012146,
196
+ "learning_rate": 0.0001788968824940048,
197
+ "loss": 0.1598,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.11191047162270183,
202
+ "grad_norm": 0.19081318378448486,
203
+ "learning_rate": 0.00017809752198241408,
204
+ "loss": 0.2578,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.11590727418065548,
209
+ "grad_norm": 0.7785463333129883,
210
+ "learning_rate": 0.00017729816147082333,
211
+ "loss": 0.2017,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.11990407673860912,
216
+ "grad_norm": 0.5954427123069763,
217
+ "learning_rate": 0.00017649880095923262,
218
+ "loss": 0.1798,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.12390087929656275,
223
+ "grad_norm": 0.9389680027961731,
224
+ "learning_rate": 0.0001756994404476419,
225
+ "loss": 0.2168,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.1278976818545164,
230
+ "grad_norm": 0.741294264793396,
231
+ "learning_rate": 0.00017490007993605118,
232
+ "loss": 0.1646,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.13189448441247004,
237
+ "grad_norm": 0.6614203453063965,
238
+ "learning_rate": 0.00017410071942446044,
239
+ "loss": 0.1309,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.13589128697042366,
244
+ "grad_norm": 0.31702834367752075,
245
+ "learning_rate": 0.00017330135891286972,
246
+ "loss": 0.25,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.1398880895283773,
251
+ "grad_norm": 0.9767606854438782,
252
+ "learning_rate": 0.00017250199840127898,
253
+ "loss": 0.223,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.14388489208633093,
258
+ "grad_norm": 0.7476068139076233,
259
+ "learning_rate": 0.00017170263788968826,
260
+ "loss": 0.2379,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.14788169464428458,
265
+ "grad_norm": 0.5389412045478821,
266
+ "learning_rate": 0.00017090327737809751,
267
+ "loss": 0.1281,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.1518784972022382,
272
+ "grad_norm": 0.3029794991016388,
273
+ "learning_rate": 0.0001701039168665068,
274
+ "loss": 0.1842,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.15587529976019185,
279
+ "grad_norm": 0.7127607464790344,
280
+ "learning_rate": 0.00016930455635491608,
281
+ "loss": 0.1654,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.15987210231814547,
286
+ "grad_norm": 0.6440016031265259,
287
+ "learning_rate": 0.00016850519584332536,
288
+ "loss": 0.2095,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.16386890487609912,
293
+ "grad_norm": 0.7137667536735535,
294
+ "learning_rate": 0.00016770583533173462,
295
+ "loss": 0.2133,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.16786570743405277,
300
+ "grad_norm": 0.5804216861724854,
301
+ "learning_rate": 0.0001669064748201439,
302
+ "loss": 0.1748,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.1718625099920064,
307
+ "grad_norm": 0.8831233978271484,
308
+ "learning_rate": 0.00016610711430855316,
309
+ "loss": 0.2371,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.17585931254996004,
314
+ "grad_norm": 0.47154247760772705,
315
+ "learning_rate": 0.00016530775379696244,
316
+ "loss": 0.1595,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.17985611510791366,
321
+ "grad_norm": 0.5801379680633545,
322
+ "learning_rate": 0.00016450839328537172,
323
+ "loss": 0.2059,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.1838529176658673,
328
+ "grad_norm": 0.6498193144798279,
329
+ "learning_rate": 0.00016370903277378098,
330
+ "loss": 0.1884,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.18784972022382093,
335
+ "grad_norm": 0.6178190112113953,
336
+ "learning_rate": 0.00016290967226219026,
337
+ "loss": 0.1875,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.19184652278177458,
342
+ "grad_norm": 0.4150198698043823,
343
+ "learning_rate": 0.00016211031175059952,
344
+ "loss": 0.163,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.19584332533972823,
349
+ "grad_norm": 0.6352556943893433,
350
+ "learning_rate": 0.00016131095123900883,
351
+ "loss": 0.2324,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.19984012789768185,
356
+ "grad_norm": 0.6494005918502808,
357
+ "learning_rate": 0.00016051159072741808,
358
+ "loss": 0.2352,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.2038369304556355,
363
+ "grad_norm": 0.41544780135154724,
364
+ "learning_rate": 0.00015971223021582736,
365
+ "loss": 0.132,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.20783373301358912,
370
+ "grad_norm": 0.5191593170166016,
371
+ "learning_rate": 0.00015891286970423662,
372
+ "loss": 0.1876,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.21183053557154277,
377
+ "grad_norm": 0.8121716976165771,
378
+ "learning_rate": 0.0001581135091926459,
379
+ "loss": 0.0978,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.2158273381294964,
384
+ "grad_norm": 0.8463426828384399,
385
+ "learning_rate": 0.00015731414868105516,
386
+ "loss": 0.1591,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.21982414068745004,
391
+ "grad_norm": 0.7256947159767151,
392
+ "learning_rate": 0.00015651478816946444,
393
+ "loss": 0.2144,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.22382094324540366,
398
+ "grad_norm": 0.817537248134613,
399
+ "learning_rate": 0.0001557154276578737,
400
+ "loss": 0.1262,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.2278177458033573,
405
+ "grad_norm": 0.6075506806373596,
406
+ "learning_rate": 0.00015491606714628298,
407
+ "loss": 0.1707,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.23181454836131096,
412
+ "grad_norm": 0.4158308804035187,
413
+ "learning_rate": 0.00015411670663469223,
414
+ "loss": 0.1992,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.23581135091926458,
419
+ "grad_norm": 0.8251807689666748,
420
+ "learning_rate": 0.00015331734612310154,
421
+ "loss": 0.188,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.23980815347721823,
426
+ "grad_norm": 0.3950844705104828,
427
+ "learning_rate": 0.0001525179856115108,
428
+ "loss": 0.1346,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.24380495603517185,
433
+ "grad_norm": 0.7561228275299072,
434
+ "learning_rate": 0.00015171862509992008,
435
+ "loss": 0.2248,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.2478017585931255,
440
+ "grad_norm": 1.5557297468185425,
441
+ "learning_rate": 0.00015091926458832934,
442
+ "loss": 0.1497,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.2517985611510791,
447
+ "grad_norm": 0.5314338207244873,
448
+ "learning_rate": 0.00015011990407673862,
449
+ "loss": 0.1718,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.2557953637090328,
454
+ "grad_norm": 0.622250497341156,
455
+ "learning_rate": 0.00014932054356514788,
456
+ "loss": 0.1844,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.2597921662669864,
461
+ "grad_norm": 0.7836592197418213,
462
+ "learning_rate": 0.00014852118305355716,
463
+ "loss": 0.1056,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.2637889688249401,
468
+ "grad_norm": 0.608813464641571,
469
+ "learning_rate": 0.00014772182254196641,
470
+ "loss": 0.2293,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.26778577138289367,
475
+ "grad_norm": 0.7594510316848755,
476
+ "learning_rate": 0.0001469224620303757,
477
+ "loss": 0.1408,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.2717825739408473,
482
+ "grad_norm": 0.7624852061271667,
483
+ "learning_rate": 0.00014612310151878498,
484
+ "loss": 0.1451,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.27577937649880097,
489
+ "grad_norm": 0.29632413387298584,
490
+ "learning_rate": 0.00014532374100719426,
491
+ "loss": 0.2376,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.2797761790567546,
496
+ "grad_norm": 0.5400770306587219,
497
+ "learning_rate": 0.00014452438049560352,
498
+ "loss": 0.1359,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.2837729816147082,
503
+ "grad_norm": 0.6905292272567749,
504
+ "learning_rate": 0.0001437250199840128,
505
+ "loss": 0.1188,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.28776978417266186,
510
+ "grad_norm": 0.43142080307006836,
511
+ "learning_rate": 0.00014292565947242206,
512
+ "loss": 0.1628,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.2917665867306155,
517
+ "grad_norm": 0.5245963335037231,
518
+ "learning_rate": 0.00014212629896083134,
519
+ "loss": 0.2371,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.29576338928856916,
524
+ "grad_norm": 0.2653980553150177,
525
+ "learning_rate": 0.00014132693844924062,
526
+ "loss": 0.1396,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.2997601918465228,
531
+ "grad_norm": 0.4195268154144287,
532
+ "learning_rate": 0.00014052757793764988,
533
+ "loss": 0.1438,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.3037569944044764,
538
+ "grad_norm": 0.48287633061408997,
539
+ "learning_rate": 0.00013972821742605916,
540
+ "loss": 0.1826,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.30775379696243005,
545
+ "grad_norm": 0.3496572971343994,
546
+ "learning_rate": 0.00013892885691446844,
547
+ "loss": 0.1042,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.3117505995203837,
552
+ "grad_norm": 0.4998539388179779,
553
+ "learning_rate": 0.00013812949640287772,
554
+ "loss": 0.1642,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.31574740207833735,
559
+ "grad_norm": 0.3192286789417267,
560
+ "learning_rate": 0.00013733013589128698,
561
+ "loss": 0.1511,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.31974420463629094,
566
+ "grad_norm": 0.19637304544448853,
567
+ "learning_rate": 0.00013653077537969626,
568
+ "loss": 0.1756,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.3237410071942446,
573
+ "grad_norm": 0.3817007839679718,
574
+ "learning_rate": 0.00013573141486810552,
575
+ "loss": 0.1729,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.32773780975219824,
580
+ "grad_norm": 0.5161091685295105,
581
+ "learning_rate": 0.0001349320543565148,
582
+ "loss": 0.1724,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.3317346123101519,
587
+ "grad_norm": 0.41696417331695557,
588
+ "learning_rate": 0.00013413269384492406,
589
+ "loss": 0.2164,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.33573141486810554,
594
+ "grad_norm": 0.7698529362678528,
595
+ "learning_rate": 0.00013333333333333334,
596
+ "loss": 0.1703,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.33972821742605913,
601
+ "grad_norm": 0.6981766819953918,
602
+ "learning_rate": 0.0001325339728217426,
603
+ "loss": 0.1563,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.3437250199840128,
608
+ "grad_norm": 0.8318856358528137,
609
+ "learning_rate": 0.0001317346123101519,
610
+ "loss": 0.185,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.34772182254196643,
615
+ "grad_norm": 0.7456117272377014,
616
+ "learning_rate": 0.00013093525179856116,
617
+ "loss": 0.1273,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.3517186250999201,
622
+ "grad_norm": 0.32372888922691345,
623
+ "learning_rate": 0.00013013589128697044,
624
+ "loss": 0.2206,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.35571542765787373,
629
+ "grad_norm": 0.2670097351074219,
630
+ "learning_rate": 0.0001293365307753797,
631
+ "loss": 0.1818,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.3597122302158273,
636
+ "grad_norm": 0.38958919048309326,
637
+ "learning_rate": 0.00012853717026378898,
638
+ "loss": 0.1137,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.36370903277378097,
643
+ "grad_norm": 0.47033756971359253,
644
+ "learning_rate": 0.00012773780975219824,
645
+ "loss": 0.1577,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.3677058353317346,
650
+ "grad_norm": 0.9784656167030334,
651
+ "learning_rate": 0.00012693844924060752,
652
+ "loss": 0.2,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.37170263788968827,
657
+ "grad_norm": 0.5877514481544495,
658
+ "learning_rate": 0.00012613908872901678,
659
+ "loss": 0.1277,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.37569944044764186,
664
+ "grad_norm": 0.5953680276870728,
665
+ "learning_rate": 0.00012533972821742606,
666
+ "loss": 0.1541,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.3796962430055955,
671
+ "grad_norm": 1.5499800443649292,
672
+ "learning_rate": 0.00012454036770583534,
673
+ "loss": 0.2633,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.38369304556354916,
678
+ "grad_norm": 0.8279550075531006,
679
+ "learning_rate": 0.00012374100719424462,
680
+ "loss": 0.2287,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.3876898481215028,
685
+ "grad_norm": 0.6293567419052124,
686
+ "learning_rate": 0.00012294164668265388,
687
+ "loss": 0.1654,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.39168665067945646,
692
+ "grad_norm": 0.897535502910614,
693
+ "learning_rate": 0.00012214228617106316,
694
+ "loss": 0.1163,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.39568345323741005,
699
+ "grad_norm": 0.2581837773323059,
700
+ "learning_rate": 0.00012134292565947243,
701
+ "loss": 0.1061,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.3996802557953637,
706
+ "grad_norm": 0.3749452531337738,
707
+ "learning_rate": 0.0001205435651478817,
708
+ "loss": 0.1198,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.40367705835331735,
713
+ "grad_norm": 1.0581694841384888,
714
+ "learning_rate": 0.00011974420463629097,
715
+ "loss": 0.2201,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.407673860911271,
720
+ "grad_norm": 0.5319008827209473,
721
+ "learning_rate": 0.00011894484412470024,
722
+ "loss": 0.1652,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.4116706634692246,
727
+ "grad_norm": 0.5321987867355347,
728
+ "learning_rate": 0.00011814548361310951,
729
+ "loss": 0.1187,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.41566746602717825,
734
+ "grad_norm": 0.764324426651001,
735
+ "learning_rate": 0.0001173461231015188,
736
+ "loss": 0.24,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.4196642685851319,
741
+ "grad_norm": 0.19670064747333527,
742
+ "learning_rate": 0.00011654676258992807,
743
+ "loss": 0.1465,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.42366107114308554,
748
+ "grad_norm": 0.6624041795730591,
749
+ "learning_rate": 0.00011574740207833734,
750
+ "loss": 0.1659,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.4276578737010392,
755
+ "grad_norm": 0.3703235983848572,
756
+ "learning_rate": 0.00011494804156674661,
757
+ "loss": 0.1845,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.4316546762589928,
762
+ "grad_norm": 0.7150025367736816,
763
+ "learning_rate": 0.00011414868105515588,
764
+ "loss": 0.1728,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.43565147881694644,
769
+ "grad_norm": 0.46187496185302734,
770
+ "learning_rate": 0.00011334932054356515,
771
+ "loss": 0.1614,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.4396482813749001,
776
+ "grad_norm": 0.614830493927002,
777
+ "learning_rate": 0.00011254996003197442,
778
+ "loss": 0.1669,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.44364508393285373,
783
+ "grad_norm": 0.5666422247886658,
784
+ "learning_rate": 0.00011175059952038369,
785
+ "loss": 0.1387,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.44764188649080733,
790
+ "grad_norm": 0.38144662976264954,
791
+ "learning_rate": 0.00011095123900879296,
792
+ "loss": 0.1492,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.451638689048761,
797
+ "grad_norm": 0.46162304282188416,
798
+ "learning_rate": 0.00011015187849720225,
799
+ "loss": 0.1946,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.4556354916067146,
804
+ "grad_norm": 0.305127888917923,
805
+ "learning_rate": 0.00010935251798561152,
806
+ "loss": 0.1498,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.4596322941646683,
811
+ "grad_norm": 0.5906249284744263,
812
+ "learning_rate": 0.00010855315747402079,
813
+ "loss": 0.119,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.4636290967226219,
818
+ "grad_norm": 0.10765030235052109,
819
+ "learning_rate": 0.00010775379696243006,
820
+ "loss": 0.1357,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.4676258992805755,
825
+ "grad_norm": 0.6704568862915039,
826
+ "learning_rate": 0.00010695443645083933,
827
+ "loss": 0.1257,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.47162270183852917,
832
+ "grad_norm": 0.5508949756622314,
833
+ "learning_rate": 0.0001061550759392486,
834
+ "loss": 0.1837,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.4756195043964828,
839
+ "grad_norm": 0.5210421085357666,
840
+ "learning_rate": 0.00010535571542765788,
841
+ "loss": 0.2463,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.47961630695443647,
846
+ "grad_norm": 0.8721128702163696,
847
+ "learning_rate": 0.00010455635491606715,
848
+ "loss": 0.1465,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.48361310951239006,
853
+ "grad_norm": 1.4497110843658447,
854
+ "learning_rate": 0.00010375699440447642,
855
+ "loss": 0.1743,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.4876099120703437,
860
+ "grad_norm": 0.46403270959854126,
861
+ "learning_rate": 0.00010295763389288569,
862
+ "loss": 0.1449,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.49160671462829736,
867
+ "grad_norm": 0.6765905618667603,
868
+ "learning_rate": 0.00010215827338129497,
869
+ "loss": 0.1533,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.495603517186251,
874
+ "grad_norm": 0.6220802068710327,
875
+ "learning_rate": 0.00010135891286970425,
876
+ "loss": 0.2103,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.49960031974420466,
881
+ "grad_norm": 0.26665735244750977,
882
+ "learning_rate": 0.00010055955235811352,
883
+ "loss": 0.1589,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.5035971223021583,
888
+ "grad_norm": 0.6205161213874817,
889
+ "learning_rate": 9.976019184652279e-05,
890
+ "loss": 0.1655,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.5075939248601119,
895
+ "grad_norm": 0.6908559799194336,
896
+ "learning_rate": 9.896083133493206e-05,
897
+ "loss": 0.1659,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.5115907274180655,
902
+ "grad_norm": 0.7626561522483826,
903
+ "learning_rate": 9.816147082334133e-05,
904
+ "loss": 0.1768,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.5155875299760192,
909
+ "grad_norm": 0.6223479509353638,
910
+ "learning_rate": 9.736211031175061e-05,
911
+ "loss": 0.1931,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.5195843325339728,
916
+ "grad_norm": 1.0529000759124756,
917
+ "learning_rate": 9.656274980015988e-05,
918
+ "loss": 0.2085,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.5235811350919265,
923
+ "grad_norm": 1.199170708656311,
924
+ "learning_rate": 9.576338928856915e-05,
925
+ "loss": 0.1647,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.5275779376498801,
930
+ "grad_norm": 0.8140775561332703,
931
+ "learning_rate": 9.496402877697842e-05,
932
+ "loss": 0.1954,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.5315747402078337,
937
+ "grad_norm": 0.5082156658172607,
938
+ "learning_rate": 9.416466826538769e-05,
939
+ "loss": 0.211,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.5355715427657873,
944
+ "grad_norm": 0.7366045117378235,
945
+ "learning_rate": 9.336530775379697e-05,
946
+ "loss": 0.2314,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.539568345323741,
951
+ "grad_norm": 0.45685720443725586,
952
+ "learning_rate": 9.256594724220624e-05,
953
+ "loss": 0.1322,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.5435651478816946,
958
+ "grad_norm": 0.9116412401199341,
959
+ "learning_rate": 9.176658673061551e-05,
960
+ "loss": 0.2288,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.5475619504396483,
965
+ "grad_norm": 0.04045610502362251,
966
+ "learning_rate": 9.096722621902478e-05,
967
+ "loss": 0.1568,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.5515587529976019,
972
+ "grad_norm": 0.5173507928848267,
973
+ "learning_rate": 9.016786570743405e-05,
974
+ "loss": 0.1515,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.5555555555555556,
979
+ "grad_norm": 0.9522683620452881,
980
+ "learning_rate": 8.936850519584333e-05,
981
+ "loss": 0.2538,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.5595523581135092,
986
+ "grad_norm": 0.5445271134376526,
987
+ "learning_rate": 8.85691446842526e-05,
988
+ "loss": 0.1693,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.5635491606714629,
993
+ "grad_norm": 0.4531286954879761,
994
+ "learning_rate": 8.776978417266187e-05,
995
+ "loss": 0.1973,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.5675459632294164,
1000
+ "grad_norm": 0.7141970992088318,
1001
+ "learning_rate": 8.697042366107114e-05,
1002
+ "loss": 0.1563,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.5715427657873701,
1007
+ "grad_norm": 0.3411566913127899,
1008
+ "learning_rate": 8.617106314948042e-05,
1009
+ "loss": 0.1146,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.5755395683453237,
1014
+ "grad_norm": 0.33047667145729065,
1015
+ "learning_rate": 8.537170263788969e-05,
1016
+ "loss": 0.1565,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.5795363709032774,
1021
+ "grad_norm": 0.9432806372642517,
1022
+ "learning_rate": 8.457234212629896e-05,
1023
+ "loss": 0.1469,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.583533173461231,
1028
+ "grad_norm": 0.379395455121994,
1029
+ "learning_rate": 8.377298161470823e-05,
1030
+ "loss": 0.1181,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.5875299760191847,
1035
+ "grad_norm": 1.003814697265625,
1036
+ "learning_rate": 8.29736211031175e-05,
1037
+ "loss": 0.1335,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.5915267785771383,
1042
+ "grad_norm": 0.6143353581428528,
1043
+ "learning_rate": 8.217426059152678e-05,
1044
+ "loss": 0.1922,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.595523581135092,
1049
+ "grad_norm": 1.0933538675308228,
1050
+ "learning_rate": 8.137490007993605e-05,
1051
+ "loss": 0.1876,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.5995203836930456,
1056
+ "grad_norm": 0.7725152373313904,
1057
+ "learning_rate": 8.057553956834533e-05,
1058
+ "loss": 0.1944,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.6035171862509991,
1063
+ "grad_norm": 0.7263298034667969,
1064
+ "learning_rate": 7.97761790567546e-05,
1065
+ "loss": 0.2342,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.6075139888089528,
1070
+ "grad_norm": 0.9801928400993347,
1071
+ "learning_rate": 7.897681854516387e-05,
1072
+ "loss": 0.1932,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.6115107913669064,
1077
+ "grad_norm": 0.8123881816864014,
1078
+ "learning_rate": 7.817745803357315e-05,
1079
+ "loss": 0.1853,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.6155075939248601,
1084
+ "grad_norm": 0.19386546313762665,
1085
+ "learning_rate": 7.737809752198242e-05,
1086
+ "loss": 0.1773,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.6195043964828137,
1091
+ "grad_norm": 0.6336228251457214,
1092
+ "learning_rate": 7.657873701039169e-05,
1093
+ "loss": 0.1537,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.6235011990407674,
1098
+ "grad_norm": 0.5702576041221619,
1099
+ "learning_rate": 7.577937649880096e-05,
1100
+ "loss": 0.1771,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.627498001598721,
1105
+ "grad_norm": 0.35963866114616394,
1106
+ "learning_rate": 7.498001598721024e-05,
1107
+ "loss": 0.1688,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.6314948041566747,
1112
+ "grad_norm": 0.5332326889038086,
1113
+ "learning_rate": 7.418065547561951e-05,
1114
+ "loss": 0.169,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.6354916067146283,
1119
+ "grad_norm": 0.6524598598480225,
1120
+ "learning_rate": 7.338129496402878e-05,
1121
+ "loss": 0.1548,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.6394884092725819,
1126
+ "grad_norm": 0.5481794476509094,
1127
+ "learning_rate": 7.258193445243805e-05,
1128
+ "loss": 0.1428,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.6434852118305355,
1133
+ "grad_norm": 0.3422311842441559,
1134
+ "learning_rate": 7.178257394084733e-05,
1135
+ "loss": 0.1782,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.6474820143884892,
1140
+ "grad_norm": 0.3071247935295105,
1141
+ "learning_rate": 7.09832134292566e-05,
1142
+ "loss": 0.1486,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.6514788169464428,
1147
+ "grad_norm": 0.5833027958869934,
1148
+ "learning_rate": 7.018385291766587e-05,
1149
+ "loss": 0.239,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.6554756195043965,
1154
+ "grad_norm": 0.6470035910606384,
1155
+ "learning_rate": 6.938449240607514e-05,
1156
+ "loss": 0.1646,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.6594724220623501,
1161
+ "grad_norm": 0.8131123185157776,
1162
+ "learning_rate": 6.858513189448441e-05,
1163
+ "loss": 0.1891,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.6634692246203038,
1168
+ "grad_norm": 0.281305193901062,
1169
+ "learning_rate": 6.778577138289369e-05,
1170
+ "loss": 0.1694,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.6674660271782574,
1175
+ "grad_norm": 0.4203711748123169,
1176
+ "learning_rate": 6.698641087130296e-05,
1177
+ "loss": 0.1765,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.6714628297362111,
1182
+ "grad_norm": 0.3434304893016815,
1183
+ "learning_rate": 6.618705035971223e-05,
1184
+ "loss": 0.2065,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.6754596322941646,
1189
+ "grad_norm": 1.1291146278381348,
1190
+ "learning_rate": 6.53876898481215e-05,
1191
+ "loss": 0.2437,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.6794564348521183,
1196
+ "grad_norm": 0.5707736015319824,
1197
+ "learning_rate": 6.458832933653078e-05,
1198
+ "loss": 0.1552,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.6834532374100719,
1203
+ "grad_norm": 0.15203942358493805,
1204
+ "learning_rate": 6.378896882494005e-05,
1205
+ "loss": 0.1222,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.6874500399680256,
1210
+ "grad_norm": 1.4667842388153076,
1211
+ "learning_rate": 6.298960831334932e-05,
1212
+ "loss": 0.2537,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.6914468425259792,
1217
+ "grad_norm": 0.5294522643089294,
1218
+ "learning_rate": 6.219024780175859e-05,
1219
+ "loss": 0.1668,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.6954436450839329,
1224
+ "grad_norm": 0.7321768999099731,
1225
+ "learning_rate": 6.139088729016786e-05,
1226
+ "loss": 0.2347,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.6994404476418865,
1231
+ "grad_norm": 0.6722360849380493,
1232
+ "learning_rate": 6.059152677857714e-05,
1233
+ "loss": 0.1461,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.7034372501998402,
1238
+ "grad_norm": 0.6050254702568054,
1239
+ "learning_rate": 5.979216626698642e-05,
1240
+ "loss": 0.1743,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.7074340527577938,
1245
+ "grad_norm": 0.6438426971435547,
1246
+ "learning_rate": 5.899280575539569e-05,
1247
+ "loss": 0.134,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.7114308553157475,
1252
+ "grad_norm": 0.3928489685058594,
1253
+ "learning_rate": 5.8193445243804957e-05,
1254
+ "loss": 0.1741,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.715427657873701,
1259
+ "grad_norm": 0.2181692123413086,
1260
+ "learning_rate": 5.7394084732214226e-05,
1261
+ "loss": 0.1901,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.7194244604316546,
1266
+ "grad_norm": 0.17083604633808136,
1267
+ "learning_rate": 5.659472422062351e-05,
1268
+ "loss": 0.1611,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.7234212629896083,
1273
+ "grad_norm": 0.8438991904258728,
1274
+ "learning_rate": 5.579536370903278e-05,
1275
+ "loss": 0.1516,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.7274180655475619,
1280
+ "grad_norm": 0.5326571464538574,
1281
+ "learning_rate": 5.4996003197442047e-05,
1282
+ "loss": 0.1638,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.7314148681055156,
1287
+ "grad_norm": 0.17157304286956787,
1288
+ "learning_rate": 5.4196642685851316e-05,
1289
+ "loss": 0.1372,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.7354116706634692,
1294
+ "grad_norm": 0.5487836003303528,
1295
+ "learning_rate": 5.33972821742606e-05,
1296
+ "loss": 0.1297,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.7394084732214229,
1301
+ "grad_norm": 0.5392123460769653,
1302
+ "learning_rate": 5.259792166266987e-05,
1303
+ "loss": 0.1717,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.7434052757793765,
1308
+ "grad_norm": 0.9712696671485901,
1309
+ "learning_rate": 5.179856115107914e-05,
1310
+ "loss": 0.1538,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.7474020783373302,
1315
+ "grad_norm": 0.0985872820019722,
1316
+ "learning_rate": 5.0999200639488406e-05,
1317
+ "loss": 0.1218,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.7513988808952837,
1322
+ "grad_norm": 0.5596745014190674,
1323
+ "learning_rate": 5.019984012789768e-05,
1324
+ "loss": 0.1305,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.7553956834532374,
1329
+ "grad_norm": 0.6789805889129639,
1330
+ "learning_rate": 4.940047961630696e-05,
1331
+ "loss": 0.1586,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.759392486011191,
1336
+ "grad_norm": 0.6722508668899536,
1337
+ "learning_rate": 4.8601119104716234e-05,
1338
+ "loss": 0.1545,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.7633892885691447,
1343
+ "grad_norm": 0.9916704893112183,
1344
+ "learning_rate": 4.78017585931255e-05,
1345
+ "loss": 0.1132,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.7673860911270983,
1350
+ "grad_norm": 0.558546781539917,
1351
+ "learning_rate": 4.700239808153478e-05,
1352
+ "loss": 0.1211,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.771382893685052,
1357
+ "grad_norm": 0.5568097233772278,
1358
+ "learning_rate": 4.620303756994405e-05,
1359
+ "loss": 0.1415,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.7753796962430056,
1364
+ "grad_norm": 1.2026703357696533,
1365
+ "learning_rate": 4.5403677058353324e-05,
1366
+ "loss": 0.2147,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.7793764988009593,
1371
+ "grad_norm": 0.3532833456993103,
1372
+ "learning_rate": 4.460431654676259e-05,
1373
+ "loss": 0.1856,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.7833733013589129,
1378
+ "grad_norm": 0.7475394010543823,
1379
+ "learning_rate": 4.380495603517186e-05,
1380
+ "loss": 0.1259,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.7873701039168665,
1385
+ "grad_norm": 0.584240734577179,
1386
+ "learning_rate": 4.300559552358114e-05,
1387
+ "loss": 0.1643,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.7913669064748201,
1392
+ "grad_norm": 0.9373254179954529,
1393
+ "learning_rate": 4.220623501199041e-05,
1394
+ "loss": 0.1365,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.7953637090327738,
1399
+ "grad_norm": 0.09720321744680405,
1400
+ "learning_rate": 4.140687450039968e-05,
1401
+ "loss": 0.1569,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.7993605115907274,
1406
+ "grad_norm": 0.3333890438079834,
1407
+ "learning_rate": 4.060751398880895e-05,
1408
+ "loss": 0.1588,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.8033573141486811,
1413
+ "grad_norm": 0.19799380004405975,
1414
+ "learning_rate": 3.980815347721823e-05,
1415
+ "loss": 0.1463,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.8073541167066347,
1420
+ "grad_norm": 0.37868112325668335,
1421
+ "learning_rate": 3.90087929656275e-05,
1422
+ "loss": 0.1312,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.8113509192645884,
1427
+ "grad_norm": 0.48458245396614075,
1428
+ "learning_rate": 3.820943245403677e-05,
1429
+ "loss": 0.1252,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.815347721822542,
1434
+ "grad_norm": 0.14216120541095734,
1435
+ "learning_rate": 3.741007194244605e-05,
1436
+ "loss": 0.1453,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.8193445243804957,
1441
+ "grad_norm": 0.7967089414596558,
1442
+ "learning_rate": 3.661071143085532e-05,
1443
+ "loss": 0.139,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.8233413269384492,
1448
+ "grad_norm": 1.3931658267974854,
1449
+ "learning_rate": 3.5811350919264594e-05,
1450
+ "loss": 0.202,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.8273381294964028,
1455
+ "grad_norm": 0.6114959120750427,
1456
+ "learning_rate": 3.501199040767386e-05,
1457
+ "loss": 0.1687,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.8313349320543565,
1462
+ "grad_norm": 0.8499948382377625,
1463
+ "learning_rate": 3.421262989608314e-05,
1464
+ "loss": 0.1564,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.8353317346123101,
1469
+ "grad_norm": 1.8267698287963867,
1470
+ "learning_rate": 3.341326938449241e-05,
1471
+ "loss": 0.2304,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.8393285371702638,
1476
+ "grad_norm": 0.572331428527832,
1477
+ "learning_rate": 3.2613908872901684e-05,
1478
+ "loss": 0.0897,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.8433253397282174,
1483
+ "grad_norm": 0.6183590888977051,
1484
+ "learning_rate": 3.181454836131095e-05,
1485
+ "loss": 0.127,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.8473221422861711,
1490
+ "grad_norm": 0.44028234481811523,
1491
+ "learning_rate": 3.101518784972022e-05,
1492
+ "loss": 0.2057,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.8513189448441247,
1497
+ "grad_norm": 0.6345455050468445,
1498
+ "learning_rate": 3.0215827338129498e-05,
1499
+ "loss": 0.1591,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.8553157474020784,
1504
+ "grad_norm": 1.1488350629806519,
1505
+ "learning_rate": 2.9416466826538767e-05,
1506
+ "loss": 0.2077,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.8593125499600319,
1511
+ "grad_norm": 0.7199774384498596,
1512
+ "learning_rate": 2.8617106314948043e-05,
1513
+ "loss": 0.1261,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.8633093525179856,
1518
+ "grad_norm": 0.8149317502975464,
1519
+ "learning_rate": 2.7817745803357316e-05,
1520
+ "loss": 0.1791,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.8673061550759392,
1525
+ "grad_norm": 0.33090534806251526,
1526
+ "learning_rate": 2.701838529176659e-05,
1527
+ "loss": 0.2044,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.8713029576338929,
1532
+ "grad_norm": 1.0773526430130005,
1533
+ "learning_rate": 2.621902478017586e-05,
1534
+ "loss": 0.1776,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.8752997601918465,
1539
+ "grad_norm": 0.5906376838684082,
1540
+ "learning_rate": 2.541966426858513e-05,
1541
+ "loss": 0.1361,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.8792965627498002,
1546
+ "grad_norm": 0.6298534870147705,
1547
+ "learning_rate": 2.4620303756994406e-05,
1548
+ "loss": 0.178,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.8832933653077538,
1553
+ "grad_norm": 1.040358066558838,
1554
+ "learning_rate": 2.3820943245403678e-05,
1555
+ "loss": 0.2245,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.8872901678657075,
1560
+ "grad_norm": 0.6028202176094055,
1561
+ "learning_rate": 2.302158273381295e-05,
1562
+ "loss": 0.0818,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.8912869704236611,
1567
+ "grad_norm": 0.43753504753112793,
1568
+ "learning_rate": 2.2222222222222223e-05,
1569
+ "loss": 0.1271,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.8952837729816147,
1574
+ "grad_norm": 0.34733837842941284,
1575
+ "learning_rate": 2.1422861710631496e-05,
1576
+ "loss": 0.1148,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.8992805755395683,
1581
+ "grad_norm": 0.33790159225463867,
1582
+ "learning_rate": 2.062350119904077e-05,
1583
+ "loss": 0.2148,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.903277378097522,
1588
+ "grad_norm": 1.4219551086425781,
1589
+ "learning_rate": 1.982414068745004e-05,
1590
+ "loss": 0.181,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.9072741806554756,
1595
+ "grad_norm": 1.1721121072769165,
1596
+ "learning_rate": 1.9024780175859313e-05,
1597
+ "loss": 0.2161,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.9112709832134293,
1602
+ "grad_norm": 1.0592964887619019,
1603
+ "learning_rate": 1.8225419664268586e-05,
1604
+ "loss": 0.1566,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.9152677857713829,
1609
+ "grad_norm": 0.2788325250148773,
1610
+ "learning_rate": 1.742605915267786e-05,
1611
+ "loss": 0.1555,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.9192645883293366,
1616
+ "grad_norm": 0.7817983031272888,
1617
+ "learning_rate": 1.662669864108713e-05,
1618
+ "loss": 0.1883,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.9232613908872902,
1623
+ "grad_norm": 0.26448529958724976,
1624
+ "learning_rate": 1.5827338129496403e-05,
1625
+ "loss": 0.2078,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.9272581934452439,
1630
+ "grad_norm": 0.92426997423172,
1631
+ "learning_rate": 1.5027977617905676e-05,
1632
+ "loss": 0.1933,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.9312549960031974,
1637
+ "grad_norm": 0.7494958639144897,
1638
+ "learning_rate": 1.4228617106314948e-05,
1639
+ "loss": 0.1466,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.935251798561151,
1644
+ "grad_norm": 0.3624798357486725,
1645
+ "learning_rate": 1.3429256594724221e-05,
1646
+ "loss": 0.1308,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.9392486011191047,
1651
+ "grad_norm": 0.6994137763977051,
1652
+ "learning_rate": 1.2629896083133494e-05,
1653
+ "loss": 0.1665,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.9432454036770583,
1658
+ "grad_norm": 0.9269047975540161,
1659
+ "learning_rate": 1.1830535571542766e-05,
1660
+ "loss": 0.193,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.947242206235012,
1665
+ "grad_norm": 0.5760440230369568,
1666
+ "learning_rate": 1.1031175059952039e-05,
1667
+ "loss": 0.109,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.9512390087929656,
1672
+ "grad_norm": 0.9416897296905518,
1673
+ "learning_rate": 1.0231814548361311e-05,
1674
+ "loss": 0.1273,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.9552358113509193,
1679
+ "grad_norm": 0.7053970098495483,
1680
+ "learning_rate": 9.432454036770584e-06,
1681
+ "loss": 0.1861,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.9592326139088729,
1686
+ "grad_norm": 1.9960613250732422,
1687
+ "learning_rate": 8.633093525179858e-06,
1688
+ "loss": 0.1811,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.9632294164668266,
1693
+ "grad_norm": 1.1505160331726074,
1694
+ "learning_rate": 7.833733013589129e-06,
1695
+ "loss": 0.2093,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.9672262190247801,
1700
+ "grad_norm": 0.7323939204216003,
1701
+ "learning_rate": 7.034372501998401e-06,
1702
+ "loss": 0.1221,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.9712230215827338,
1707
+ "grad_norm": 0.810534656047821,
1708
+ "learning_rate": 6.2350119904076745e-06,
1709
+ "loss": 0.1261,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.9752198241406874,
1714
+ "grad_norm": 0.25207674503326416,
1715
+ "learning_rate": 5.435651478816946e-06,
1716
+ "loss": 0.1268,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.9792166266986411,
1721
+ "grad_norm": 0.6386179327964783,
1722
+ "learning_rate": 4.6362909672262196e-06,
1723
+ "loss": 0.1437,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.9832134292565947,
1728
+ "grad_norm": 0.9403632879257202,
1729
+ "learning_rate": 3.836930455635491e-06,
1730
+ "loss": 0.2184,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.9872102318145484,
1735
+ "grad_norm": 0.7406390905380249,
1736
+ "learning_rate": 3.0375699440447646e-06,
1737
+ "loss": 0.1826,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.991207034372502,
1742
+ "grad_norm": 0.5971857309341431,
1743
+ "learning_rate": 2.238209432454037e-06,
1744
+ "loss": 0.1409,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.9952038369304557,
1749
+ "grad_norm": 0.8005123734474182,
1750
+ "learning_rate": 1.4388489208633094e-06,
1751
+ "loss": 0.18,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.9992006394884093,
1756
+ "grad_norm": 0.33795028924942017,
1757
+ "learning_rate": 6.394884092725819e-07,
1758
+ "loss": 0.1293,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 1.0,
1763
+ "eval_loss": 0.16163970530033112,
1764
+ "eval_runtime": 143.7398,
1765
+ "eval_samples_per_second": 1.934,
1766
+ "eval_steps_per_second": 1.934,
1767
+ "step": 2502
1768
+ }
1769
+ ],
1770
+ "logging_steps": 10,
1771
+ "max_steps": 2502,
1772
+ "num_input_tokens_seen": 0,
1773
+ "num_train_epochs": 1,
1774
+ "save_steps": 500,
1775
+ "stateful_callbacks": {
1776
+ "TrainerControl": {
1777
+ "args": {
1778
+ "should_epoch_stop": false,
1779
+ "should_evaluate": false,
1780
+ "should_log": false,
1781
+ "should_save": true,
1782
+ "should_training_stop": true
1783
+ },
1784
+ "attributes": {}
1785
+ }
1786
+ },
1787
+ "total_flos": 5.467975082783539e+16,
1788
+ "train_batch_size": 1,
1789
+ "trial_name": null,
1790
+ "trial_params": null
1791
+ }
checkpoint-2502/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a69a2c8c65e1cd6d2b614ac9d8c21211b418dbd289c11ffb03fd1094f703220b
3
+ size 5368
runs/Mar11_10-42-22_506f808854a3/events.out.tfevents.1741689745.506f808854a3.647.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a57c9cb4bc2275487da016e55587e01654f3aeafd0b3936a930230d10328283
3
+ size 58893
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "additional_special_tokens": [],
32
+ "bos_token": "<s>",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "extra_special_tokens": {},
36
+ "legacy": false,
37
+ "model_max_length": 1000000000000000019884624838656,
38
+ "pad_token": "</s>",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }