|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import xformers.ops as xops
|
|
|
|
class SmallGPT(nn.Module):
|
|
def __init__(self, vocab_size, d_model=256, n_heads=8, n_layers=6, max_length=128, pad_idx=0):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.max_length = max_length
|
|
|
|
|
|
self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=pad_idx)
|
|
self.position_embedding = nn.Embedding(max_length, d_model)
|
|
|
|
|
|
self.blocks = nn.ModuleList([
|
|
TransformerBlock(d_model, n_heads) for _ in range(n_layers)
|
|
])
|
|
|
|
|
|
self.ln_f = nn.LayerNorm(d_model)
|
|
self.head = nn.Linear(d_model, vocab_size, bias=False)
|
|
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.03)
|
|
if module.bias is not None:
|
|
torch.nn.init.zeros_(module.bias)
|
|
elif isinstance(module, nn.Embedding):
|
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.03)
|
|
|
|
def forward(self, x):
|
|
batch_size, seq_len = x.size()
|
|
|
|
|
|
pos = torch.arange(0, seq_len, dtype=torch.long, device=x.device)
|
|
pos = pos.unsqueeze(0).expand(batch_size, seq_len)
|
|
|
|
|
|
tok_emb = self.token_embedding(x)
|
|
pos_emb = self.position_embedding(pos)
|
|
x = tok_emb + pos_emb
|
|
|
|
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
|
|
|
|
x = self.ln_f(x)
|
|
logits = self.head(x)
|
|
|
|
return logits
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, d_model, n_heads):
|
|
super().__init__()
|
|
self.ln1 = nn.LayerNorm(d_model)
|
|
self.attn = CausalSelfAttention(d_model, n_heads)
|
|
self.ln2 = nn.LayerNorm(d_model)
|
|
self.mlp = MLP(d_model)
|
|
|
|
def forward(self, x):
|
|
x = x + self.attn(self.ln1(x))
|
|
x = x + self.mlp(self.ln2(x))
|
|
return x
|
|
|
|
|
|
class CausalSelfAttention(nn.Module):
|
|
def __init__(self, d_model, n_heads):
|
|
super().__init__()
|
|
assert d_model % n_heads == 0
|
|
self.n_heads = n_heads
|
|
self.d_model = d_model
|
|
self.head_dim = d_model // n_heads
|
|
|
|
self.qkv = nn.Linear(d_model, 3 * d_model)
|
|
self.proj = nn.Linear(d_model, d_model)
|
|
|
|
def forward(self, x):
|
|
batch, seq_len, d_model = x.size()
|
|
qkv = self.qkv(x)
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
|
|
q = q.view(batch, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
k = k.view(batch, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
v = v.view(batch, seq_len, self.n_heads, self.head_dim).transpose(1, 2)
|
|
|
|
|
|
q = q.reshape(batch * self.n_heads, seq_len, self.head_dim)
|
|
k = k.reshape(batch * self.n_heads, seq_len, self.head_dim)
|
|
v = v.reshape(batch * self.n_heads, seq_len, self.head_dim)
|
|
|
|
|
|
out = xops.memory_efficient_attention(q, k, v, attn_bias=xops.LowerTriangularMask())
|
|
|
|
|
|
|
|
out = out.view(batch, self.n_heads, seq_len, self.head_dim)
|
|
out = out.transpose(1, 2).contiguous().view(batch, seq_len, d_model)
|
|
|
|
return self.proj(out)
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, d_model):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(d_model, 4 * d_model)
|
|
self.fc2 = nn.Linear(4 * d_model, d_model)
|
|
self.silu = nn.SiLU()
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.silu(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
DEFAULT_CONFIG = {
|
|
"vocab_size": 24_005,
|
|
"d_model": 256,
|
|
"n_heads": 8,
|
|
"n_layers": 6,
|
|
"max_length": 128,
|
|
} |