|
from typing import Any, Callable, ClassVar, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.cache_utils import DynamicCache |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.generation import GenerationMixin |
|
from transformers.masking_utils import create_causal_mask |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging |
|
from transformers.utils.import_utils import is_causal_conv1d_available |
|
|
|
if is_causal_conv1d_available(): |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
else: |
|
causal_conv1d_fn, causal_conv1d_update = None, None |
|
|
|
|
|
kernel_modules = (causal_conv1d_fn, causal_conv1d_update) |
|
is_fast_path_available = all(kernel_modules) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LFM2Config(PretrainedConfig): |
|
model_type = "lfm2" |
|
keys_to_ignore_at_inference: ClassVar = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 65536, |
|
hidden_size: int = 2560, |
|
num_hidden_layers: int = 32, |
|
pad_token_id: int = 0, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
tie_embedding: bool = True, |
|
theta: float = 1000000.0, |
|
max_position_embeddings: int = 128_000, |
|
use_cache: bool = True, |
|
norm_eps: float = 0.00001, |
|
initializer_range: float = 0.02, |
|
num_attention_heads: int = 32, |
|
num_key_value_heads: int = 8, |
|
conv_bias: bool = False, |
|
conv_dim: int = 2560, |
|
conv_L_cache: int = 3, |
|
block_dim: int = 2560, |
|
block_ff_dim: int = 12288, |
|
block_multiple_of: int = 256, |
|
block_ffn_dim_multiplier: float = 1.0, |
|
block_auto_adjust_ff_dim: bool = True, |
|
full_attn_idxs: Optional[list[int]] = None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.rope_theta = theta |
|
self.max_position_embeddings = max_position_embeddings |
|
self.use_cache = use_cache |
|
self.norm_eps = norm_eps |
|
self.initializer_range = initializer_range |
|
|
|
|
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
self.full_attn_idxs = full_attn_idxs |
|
|
|
|
|
self.conv_bias = conv_bias |
|
self.conv_dim = conv_dim |
|
self.conv_L_cache = conv_L_cache |
|
|
|
|
|
self.block_dim = block_dim |
|
self.block_ff_dim = block_ff_dim |
|
self.block_multiple_of = block_multiple_of |
|
self.block_ffn_dim_multiplier = block_ffn_dim_multiplier |
|
self.block_auto_adjust_ff_dim = block_auto_adjust_ff_dim |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_embedding, |
|
**kwargs, |
|
) |
|
|
|
@property |
|
def layers_block_type(self): |
|
return ["attention" if i in self.full_attn_idxs else "conv" for i in range(self.num_hidden_layers)] |
|
|
|
|
|
class LFM2RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
output = self._norm(x.float()) |
|
return output.type_as(x) * self.weight |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class LFM2RotaryEmbedding(nn.Module): |
|
def __init__(self, config: LFM2Config, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
with torch.autocast(device_type=device_type, enabled=False): |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
num_key_value_groups = query.shape[1] // key.shape[1] |
|
key_states = repeat_kv(key, num_key_value_groups) |
|
value_states = repeat_kv(value, num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
else: |
|
seq_len = key_states.shape[-2] |
|
causal_mask = torch.triu( |
|
torch.full((seq_len, seq_len), float("-inf"), device=attn_weights.device), |
|
diagonal=1, |
|
) |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class LFM2MLP(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
ff_dim: int, |
|
multiple_of: int, |
|
auto_adjust_ff_dim: bool, |
|
ffn_dim_multiplier: Optional[float], |
|
): |
|
super().__init__() |
|
if auto_adjust_ff_dim: |
|
ff_dim = int(2 * ff_dim / 3) |
|
|
|
if ffn_dim_multiplier is not None: |
|
ff_dim = int(ffn_dim_multiplier * ff_dim) |
|
ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of) |
|
|
|
self.w1 = nn.Linear(dim, ff_dim, bias=False) |
|
self.w3 = nn.Linear(dim, ff_dim, bias=False) |
|
self.w2 = nn.Linear(ff_dim, dim, bias=False) |
|
|
|
def forward(self, x): |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class LFM2Cache(DynamicCache): |
|
""" |
|
Attention and conv cache for LFM2. |
|
|
|
It stores the Key and Value states as a list of tensors, one for each layer. |
|
Attention layer cache shape: `[batch_size, num_heads, seq_len, head_dim]`. |
|
Conv layer cache shape: `[batch_size, conv_dim, L_cache-1]`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
config: LFM2Config, |
|
max_batch_size: int, |
|
dtype: torch.dtype = torch.float32, |
|
device: Union[torch.device, str, None] = None, |
|
): |
|
super().__init__() |
|
self.max_batch_size = max_batch_size |
|
self.full_attn_idxs = config.full_attn_idxs |
|
self.conv_L_cache = config.conv_L_cache |
|
self._dtype = dtype |
|
|
|
self.conv_cache: list[torch.Tensor] = [] |
|
device = torch.device(device) if device is not None else None |
|
|
|
for _ in range(config.num_hidden_layers): |
|
conv_state = torch.zeros( |
|
self.max_batch_size, |
|
config.conv_dim, |
|
self.conv_L_cache, |
|
dtype=self._dtype, |
|
device=device, |
|
) |
|
torch._dynamo.mark_static_address(conv_state) |
|
self.conv_cache.append(conv_state) |
|
|
|
def update( |
|
self, |
|
key_states: torch.Tensor, |
|
value_states: torch.Tensor, |
|
layer_idx: int, |
|
cache_kwargs: Optional[dict[str, Any]] = None, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. |
|
|
|
Parameters: |
|
key_states (`torch.Tensor`): |
|
The new key states to cache. |
|
value_states (`torch.Tensor`): |
|
The new value states to cache. |
|
layer_idx (`int`): |
|
The index of the layer to cache the states for. |
|
cache_kwargs (`Dict[str, Any]`, `optional`): |
|
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`. |
|
|
|
Return: |
|
A tuple containing the updated key and value states. |
|
""" |
|
|
|
|
|
if layer_idx == self.full_attn_idxs[0]: |
|
self._seen_tokens += key_states.shape[-2] |
|
|
|
|
|
if key_states is not None: |
|
if len(self.key_cache) <= layer_idx: |
|
|
|
for _ in range(len(self.key_cache), layer_idx): |
|
self.key_cache.append(torch.tensor([])) |
|
self.value_cache.append(torch.tensor([])) |
|
self.key_cache.append(key_states) |
|
self.value_cache.append(value_states) |
|
elif ( |
|
not self.key_cache[layer_idx].numel() |
|
): |
|
self.key_cache[layer_idx] = key_states |
|
self.value_cache[layer_idx] = value_states |
|
else: |
|
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2) |
|
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2) |
|
|
|
return self.key_cache[layer_idx], self.value_cache[layer_idx] |
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor): |
|
"""Reorders the cache for beam search, given the selected beam indices.""" |
|
for layer_idx in range(len(self.key_cache)): |
|
device = self.key_cache[layer_idx].device |
|
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
device = self.value_cache[layer_idx].device |
|
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
device = self.conv_cache[layer_idx].device |
|
self.conv_cache[layer_idx] = self.conv_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed.""" |
|
|
|
layer_idx = self.full_attn_idxs[0] if layer_idx not in self.full_attn_idxs else layer_idx |
|
if len(self.key_cache) <= layer_idx or self.key_cache[layer_idx].numel() == 0: |
|
return 0 |
|
return self.key_cache[layer_idx].shape[-2] |
|
|
|
def reset(self): |
|
for layer_idx in range(len(self.conv_cache)): |
|
|
|
self.conv_cache[layer_idx].zero_() |
|
|
|
|
|
class LFM2Attention(nn.Module): |
|
def __init__(self, config: LFM2Config, layer_idx: Optional[int] = None, **kwargs): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and " |
|
"will lead to errors during the forward call if caching is used. Please make sure to provide a " |
|
"`layer_idx` when creating this class." |
|
) |
|
self.head_dim = config.hidden_size // config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_causal = True |
|
|
|
self.q_layernorm = LFM2RMSNorm(self.head_dim, eps=config.norm_eps) |
|
self.k_layernorm = LFM2RMSNorm(self.head_dim, eps=config.norm_eps) |
|
|
|
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) |
|
self.out_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[LFM2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
q = self.q_layernorm(self.q_proj(hidden_states).view(*hidden_shape)).transpose(1, 2) |
|
k = self.k_layernorm(self.k_proj(hidden_states).view(*hidden_shape)).transpose(1, 2) |
|
v = self.v_proj(hidden_states).view(*hidden_shape).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
q, k = apply_rotary_pos_emb(q, k, cos, sin) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
k, v = past_key_value.update( |
|
key_states=k, value_states=v, layer_idx=self.layer_idx, cache_kwargs=cache_kwargs |
|
) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
q, |
|
k, |
|
v, |
|
attention_mask, |
|
dropout=0.0, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
output = self.out_proj(attn_output) |
|
return output, attn_weights |
|
|
|
|
|
class LFM2ShortConv(nn.Module): |
|
def __init__( |
|
self, |
|
config: LFM2Config, |
|
dim: int, |
|
layer_idx: int, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.L_cache = config.conv_L_cache |
|
self.bias = config.conv_bias |
|
|
|
self.conv = nn.Conv1d( |
|
in_channels=dim, |
|
out_channels=dim, |
|
kernel_size=self.L_cache, |
|
groups=dim, |
|
bias=self.bias, |
|
padding=self.L_cache - 1, |
|
) |
|
self.in_proj = nn.Linear(dim, 3 * dim, bias=self.bias) |
|
self.out_proj = nn.Linear(dim, dim, bias=self.bias) |
|
|
|
def cuda_kernels_forward( |
|
self, |
|
x: torch.Tensor, |
|
cache_params: Optional[LFM2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
BCx = self.in_proj(x).transpose(-1, -2) |
|
B, C, x = BCx.chunk(3, dim=-2) |
|
|
|
Bx = B * x |
|
|
|
conv_weights = self.conv.weight.view(self.conv.weight.size(0), self.conv.weight.size(2)) |
|
if cache_params is not None and cache_position[0] > 0: |
|
conv_out = causal_conv1d_update( |
|
Bx.squeeze(-1), |
|
cache_params.conv_cache[self.layer_idx], |
|
conv_weights, |
|
self.conv.bias, |
|
None, |
|
) |
|
conv_out = conv_out.unsqueeze(-1) |
|
else: |
|
if cache_params is not None: |
|
conv_state = nn.functional.pad(Bx, (self.L_cache - Bx.shape[-1], 0)) |
|
cache_params.conv_cache[self.layer_idx].copy_(conv_state) |
|
|
|
conv_out = causal_conv1d_fn(Bx, conv_weights, self.conv.bias, activation=None) |
|
|
|
y = C * conv_out |
|
y = self.out_proj(y.transpose(-1, -2).contiguous()) |
|
return y |
|
|
|
def slow_forward( |
|
self, |
|
x: torch.Tensor, |
|
cache_params: Optional[LFM2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
seqlen = x.shape[1] |
|
BCx = self.in_proj(x).transpose(-1, -2) |
|
B, C, x = BCx.chunk(3, dim=-2) |
|
|
|
Bx = B * x |
|
|
|
if cache_params is not None and cache_position[0] > 0: |
|
conv_state = cache_params.conv_cache[self.layer_idx] |
|
cache_position = cache_position.clamp(0, self.L_cache - 1) |
|
conv_state = conv_state.roll(shifts=-1, dims=-1) |
|
conv_state[:, :, cache_position] = Bx.to(device=conv_state.device, dtype=conv_state.dtype) |
|
cache_params.conv_cache[self.layer_idx].copy_(conv_state) |
|
conv_out = torch.sum(conv_state.to(Bx.device) * self.conv.weight[:, 0, :], dim=-1) |
|
if self.bias: |
|
conv_out += self.conv.bias |
|
|
|
conv_out = conv_out.unsqueeze(-1) |
|
else: |
|
if cache_params is not None: |
|
conv_state = nn.functional.pad(Bx, (self.L_cache - Bx.shape[-1], 0)) |
|
cache_params.conv_cache[self.layer_idx].copy_(conv_state) |
|
|
|
conv_out = self.conv(Bx)[..., :seqlen] |
|
|
|
y = C * conv_out |
|
y = y.transpose(-1, -2).contiguous() |
|
y = self.out_proj(y) |
|
return y |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
cache_params: Optional[LFM2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if is_fast_path_available and "cuda" in x.device.type and not torch._dynamo.is_compiling(): |
|
return self.cuda_kernels_forward(x, cache_params, cache_position, attention_mask) |
|
return self.slow_forward(x, cache_params, cache_position, attention_mask) |
|
|
|
|
|
class LFM2AttentionDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: LFM2Config, layer_idx: int): |
|
super().__init__() |
|
self.self_attn = LFM2Attention(config, layer_idx) |
|
self.feed_forward = LFM2MLP( |
|
dim=config.block_dim, |
|
ff_dim=config.block_ff_dim, |
|
multiple_of=config.block_multiple_of, |
|
auto_adjust_ff_dim=config.block_auto_adjust_ff_dim, |
|
ffn_dim_multiplier=config.block_ffn_dim_multiplier, |
|
) |
|
self.operator_norm = LFM2RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
self.ffn_norm = LFM2RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
h, self_attn_weights = self.self_attn( |
|
hidden_states=self.operator_norm(hidden_states), |
|
position_embeddings=position_embeddings, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
h += hidden_states |
|
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
|
|
outputs = (out,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class LFM2ShortConvDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: LFM2Config, layer_idx: int): |
|
super().__init__() |
|
self.conv = LFM2ShortConv( |
|
config=config, |
|
dim=config.conv_dim, |
|
layer_idx=layer_idx, |
|
) |
|
self.feed_forward = LFM2MLP( |
|
dim=config.block_dim, |
|
ff_dim=config.block_ff_dim, |
|
multiple_of=config.block_multiple_of, |
|
auto_adjust_ff_dim=config.block_auto_adjust_ff_dim, |
|
ffn_dim_multiplier=config.block_ffn_dim_multiplier, |
|
) |
|
self.operator_norm = LFM2RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
self.ffn_norm = LFM2RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
past_key_value: Optional[LFM2Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
**kwargs, |
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
h = self.conv( |
|
self.operator_norm(hidden_states), |
|
cache_params=past_key_value, |
|
cache_position=cache_position, |
|
attention_mask=attention_mask, |
|
) |
|
self_attn_weights = None |
|
|
|
h += hidden_states |
|
out = h + self.feed_forward.forward(self.ffn_norm(h)) |
|
|
|
outputs = (out,) |
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class LFM2PretrainedModel(PreTrainedModel): |
|
config_class = LFM2Config |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules: ClassVar = ["LFM2AttentionDecoderLayer", "LFM2ShortConvDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, LFM2RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class LFM2Model(LFM2PretrainedModel): |
|
def __init__(self, config: LFM2Config): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
self.pos_emb = LFM2RotaryEmbedding(config) |
|
|
|
decoder_layers = [] |
|
for i in range(config.num_hidden_layers): |
|
if i in config.full_attn_idxs: |
|
decoder_layers.append(LFM2AttentionDecoderLayer(config, layer_idx=i)) |
|
else: |
|
decoder_layers.append(LFM2ShortConvDecoderLayer(config, layer_idx=i)) |
|
self.layers = nn.ModuleList(decoder_layers) |
|
|
|
self.embedding_norm = LFM2RMSNorm(config.hidden_size, eps=config.norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[LFM2Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> BaseModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if use_cache and past_key_values is None: |
|
batch_size = inputs_embeds.shape[0] |
|
past_key_values = LFM2Cache( |
|
config=self.config, max_batch_size=batch_size, dtype=self.dtype, device=self.device |
|
) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = create_causal_mask( |
|
config=self.config, |
|
input_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
past_key_values=past_key_values, |
|
position_ids=position_ids, |
|
) |
|
hidden_states = inputs_embeds |
|
|
|
position_embeddings = self.pos_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.embedding_norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
output = BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values if use_cache else None, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
return output if return_dict else output.to_tuple() |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
|
|
@auto_docstring |
|
class LFM2ForCausalLM(LFM2PretrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: LFM2Config): |
|
super().__init__(config) |
|
self.model = LFM2Model(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[LFM2Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
) -> Union[tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
return_dict=return_dict, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=True, |
|
**kwargs, |
|
): |
|
|
|
|
|
empty_past_kv = past_key_values is None or ( |
|
isinstance(past_key_values, DynamicCache) and past_key_values._seen_tokens == 0 |
|
) |
|
|
|
|
|
if not empty_past_kv: |
|
|
|
|
|
|
|
|
|
|
|
if ( |
|
inputs_embeds is not None |
|
or cache_position[-1] >= input_ids.shape[1] |
|
): |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
else: |
|
past_key_values = LFM2Cache(self.config, input_ids.shape[0], dtype=self.dtype, device=self.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if inputs_embeds is not None and empty_past_kv: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids.contiguous()} |
|
|
|
model_inputs.update( |
|
{ |
|
|
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache, |
|
"attention_mask": attention_mask, |
|
"cache_position": cache_position, |
|
} |
|
) |
|
return model_inputs |
|
|
|
|
|
__all__ = ["LFM2ForCausalLM", "LFM2Model", "LFM2PretrainedModel"] |
|
|