Update README.md (#95)
Browse files- Update README.md (6dc5b10281c1e4dccb830be602b865178c8c1316)
Co-authored-by: Barak Weiss <[email protected]>
README.md
CHANGED
@@ -136,14 +136,20 @@ pipe.to("cuda")
|
|
136 |
pipe_upsample.to("cuda")
|
137 |
pipe.vae.enable_tiling()
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
|
140 |
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
141 |
-
expected_height, expected_width =
|
142 |
downscale_factor = 2 / 3
|
143 |
num_frames = 121
|
144 |
|
145 |
# Part 1. Generate video at smaller resolution
|
146 |
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
|
|
147 |
latents = pipe(
|
148 |
conditions=None,
|
149 |
prompt=prompt,
|
@@ -192,7 +198,7 @@ export_to_video(video, "output.mp4", fps=24)
|
|
192 |
import torch
|
193 |
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
|
194 |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
195 |
-
from diffusers.utils import export_to_video, load_image
|
196 |
|
197 |
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
|
198 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
|
@@ -200,13 +206,18 @@ pipe.to("cuda")
|
|
200 |
pipe_upsample.to("cuda")
|
201 |
pipe.vae.enable_tiling()
|
202 |
|
|
|
|
|
|
|
|
|
|
|
203 |
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png")
|
204 |
-
video = [image]
|
205 |
condition1 = LTXVideoCondition(video=video, frame_index=0)
|
206 |
|
207 |
-
prompt = "
|
208 |
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
209 |
-
expected_height, expected_width =
|
210 |
downscale_factor = 2 / 3
|
211 |
num_frames = 96
|
212 |
|
@@ -254,7 +265,6 @@ video = pipe(
|
|
254 |
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
255 |
|
256 |
export_to_video(video, "output.mp4", fps=24)
|
257 |
-
|
258 |
```
|
259 |
|
260 |
### For video-to-video:
|
@@ -272,8 +282,8 @@ pipe_upsample.to("cuda")
|
|
272 |
pipe.vae.enable_tiling()
|
273 |
|
274 |
def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
275 |
-
height = height - (height % pipe.
|
276 |
-
width = width - (width % pipe.
|
277 |
return height, width
|
278 |
|
279 |
video = load_video(
|
@@ -331,10 +341,8 @@ video = pipe(
|
|
331 |
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
332 |
|
333 |
export_to_video(video, "output.mp4", fps=24)
|
334 |
-
|
335 |
```
|
336 |
|
337 |
-
|
338 |
To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
|
339 |
|
340 |
Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more.
|
|
|
136 |
pipe_upsample.to("cuda")
|
137 |
pipe.vae.enable_tiling()
|
138 |
|
139 |
+
def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
140 |
+
height = height - (height % pipe.vae_spatial_compression_ratio)
|
141 |
+
width = width - (width % pipe.vae_spatial_compression_ratio)
|
142 |
+
return height, width
|
143 |
+
|
144 |
prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
|
145 |
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
146 |
+
expected_height, expected_width = 512, 704
|
147 |
downscale_factor = 2 / 3
|
148 |
num_frames = 121
|
149 |
|
150 |
# Part 1. Generate video at smaller resolution
|
151 |
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
152 |
+
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
153 |
latents = pipe(
|
154 |
conditions=None,
|
155 |
prompt=prompt,
|
|
|
198 |
import torch
|
199 |
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
|
200 |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
201 |
+
from diffusers.utils import export_to_video, load_image, load_video
|
202 |
|
203 |
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
|
204 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
|
|
|
206 |
pipe_upsample.to("cuda")
|
207 |
pipe.vae.enable_tiling()
|
208 |
|
209 |
+
def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
210 |
+
height = height - (height % pipe.vae_spatial_compression_ratio)
|
211 |
+
width = width - (width % pipe.vae_spatial_compression_ratio)
|
212 |
+
return height, width
|
213 |
+
|
214 |
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png")
|
215 |
+
video = load_video(export_to_video([image])) # compress the image using video compression as the model was trained on videos
|
216 |
condition1 = LTXVideoCondition(video=video, frame_index=0)
|
217 |
|
218 |
+
prompt = "A cute little penguin takes out a book and starts reading it"
|
219 |
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
220 |
+
expected_height, expected_width = 480, 832
|
221 |
downscale_factor = 2 / 3
|
222 |
num_frames = 96
|
223 |
|
|
|
265 |
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
266 |
|
267 |
export_to_video(video, "output.mp4", fps=24)
|
|
|
268 |
```
|
269 |
|
270 |
### For video-to-video:
|
|
|
282 |
pipe.vae.enable_tiling()
|
283 |
|
284 |
def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
285 |
+
height = height - (height % pipe.vae_spatial_compression_ratio)
|
286 |
+
width = width - (width % pipe.vae_spatial_compression_ratio)
|
287 |
return height, width
|
288 |
|
289 |
video = load_video(
|
|
|
341 |
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
342 |
|
343 |
export_to_video(video, "output.mp4", fps=24)
|
|
|
344 |
```
|
345 |
|
|
|
346 |
To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
|
347 |
|
348 |
Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more.
|