jacobitterman bweisslt commited on
Commit
91e9c46
·
verified ·
1 Parent(s): a5e9a0d

Update README.md (#95)

Browse files

- Update README.md (6dc5b10281c1e4dccb830be602b865178c8c1316)


Co-authored-by: Barak Weiss <[email protected]>

Files changed (1) hide show
  1. README.md +18 -10
README.md CHANGED
@@ -136,14 +136,20 @@ pipe.to("cuda")
136
  pipe_upsample.to("cuda")
137
  pipe.vae.enable_tiling()
138
 
 
 
 
 
 
139
  prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
140
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
141
- expected_height, expected_width = 704, 512
142
  downscale_factor = 2 / 3
143
  num_frames = 121
144
 
145
  # Part 1. Generate video at smaller resolution
146
  downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
 
147
  latents = pipe(
148
  conditions=None,
149
  prompt=prompt,
@@ -192,7 +198,7 @@ export_to_video(video, "output.mp4", fps=24)
192
  import torch
193
  from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
194
  from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
195
- from diffusers.utils import export_to_video, load_image
196
 
197
  pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
198
  pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
@@ -200,13 +206,18 @@ pipe.to("cuda")
200
  pipe_upsample.to("cuda")
201
  pipe.vae.enable_tiling()
202
 
 
 
 
 
 
203
  image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png")
204
- video = [image]
205
  condition1 = LTXVideoCondition(video=video, frame_index=0)
206
 
207
- prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
208
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
209
- expected_height, expected_width = 832, 480
210
  downscale_factor = 2 / 3
211
  num_frames = 96
212
 
@@ -254,7 +265,6 @@ video = pipe(
254
  video = [frame.resize((expected_width, expected_height)) for frame in video]
255
 
256
  export_to_video(video, "output.mp4", fps=24)
257
-
258
  ```
259
 
260
  ### For video-to-video:
@@ -272,8 +282,8 @@ pipe_upsample.to("cuda")
272
  pipe.vae.enable_tiling()
273
 
274
  def round_to_nearest_resolution_acceptable_by_vae(height, width):
275
- height = height - (height % pipe.vae_temporal_compression_ratio)
276
- width = width - (width % pipe.vae_temporal_compression_ratio)
277
  return height, width
278
 
279
  video = load_video(
@@ -331,10 +341,8 @@ video = pipe(
331
  video = [frame.resize((expected_width, expected_height)) for frame in video]
332
 
333
  export_to_video(video, "output.mp4", fps=24)
334
-
335
  ```
336
 
337
-
338
  To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
339
 
340
  Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more.
 
136
  pipe_upsample.to("cuda")
137
  pipe.vae.enable_tiling()
138
 
139
+ def round_to_nearest_resolution_acceptable_by_vae(height, width):
140
+ height = height - (height % pipe.vae_spatial_compression_ratio)
141
+ width = width - (width % pipe.vae_spatial_compression_ratio)
142
+ return height, width
143
+
144
  prompt = "The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region."
145
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
146
+ expected_height, expected_width = 512, 704
147
  downscale_factor = 2 / 3
148
  num_frames = 121
149
 
150
  # Part 1. Generate video at smaller resolution
151
  downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
152
+ downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
153
  latents = pipe(
154
  conditions=None,
155
  prompt=prompt,
 
198
  import torch
199
  from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
200
  from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
201
+ from diffusers.utils import export_to_video, load_image, load_video
202
 
203
  pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16)
204
  pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
 
206
  pipe_upsample.to("cuda")
207
  pipe.vae.enable_tiling()
208
 
209
+ def round_to_nearest_resolution_acceptable_by_vae(height, width):
210
+ height = height - (height % pipe.vae_spatial_compression_ratio)
211
+ width = width - (width % pipe.vae_spatial_compression_ratio)
212
+ return height, width
213
+
214
  image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png")
215
+ video = load_video(export_to_video([image])) # compress the image using video compression as the model was trained on videos
216
  condition1 = LTXVideoCondition(video=video, frame_index=0)
217
 
218
+ prompt = "A cute little penguin takes out a book and starts reading it"
219
  negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
220
+ expected_height, expected_width = 480, 832
221
  downscale_factor = 2 / 3
222
  num_frames = 96
223
 
 
265
  video = [frame.resize((expected_width, expected_height)) for frame in video]
266
 
267
  export_to_video(video, "output.mp4", fps=24)
 
268
  ```
269
 
270
  ### For video-to-video:
 
282
  pipe.vae.enable_tiling()
283
 
284
  def round_to_nearest_resolution_acceptable_by_vae(height, width):
285
+ height = height - (height % pipe.vae_spatial_compression_ratio)
286
+ width = width - (width % pipe.vae_spatial_compression_ratio)
287
  return height, width
288
 
289
  video = load_video(
 
341
  video = [frame.resize((expected_width, expected_height)) for frame in video]
342
 
343
  export_to_video(video, "output.mp4", fps=24)
 
344
  ```
345
 
 
346
  To learn more, check out the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video).
347
 
348
  Diffusers also supports directly loading from the original LTX checkpoints using the `from_single_file()` method. Check out [this section](https://huggingface.co/docs/diffusers/main/en/api/pipelines/ltx_video#loading-single-files) to learn more.