Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- .gitattributes +1 -0
- README.md +60 -0
- __init__.py +0 -0
- block_config.py +118 -0
- chat_template.jinja +1 -0
- config.json +2968 -0
- configuration_decilm.py +65 -0
- model-00001-of-00037.safetensors +3 -0
- model-00002-of-00037.safetensors +3 -0
- model-00003-of-00037.safetensors +3 -0
- model-00004-of-00037.safetensors +3 -0
- model-00005-of-00037.safetensors +3 -0
- model-00006-of-00037.safetensors +3 -0
- model-00007-of-00037.safetensors +3 -0
- model-00008-of-00037.safetensors +3 -0
- model-00009-of-00037.safetensors +3 -0
- model-00010-of-00037.safetensors +3 -0
- model-00011-of-00037.safetensors +3 -0
- model-00012-of-00037.safetensors +3 -0
- model-00013-of-00037.safetensors +3 -0
- model-00014-of-00037.safetensors +3 -0
- model-00015-of-00037.safetensors +3 -0
- model-00016-of-00037.safetensors +3 -0
- model-00017-of-00037.safetensors +3 -0
- model-00018-of-00037.safetensors +3 -0
- model-00019-of-00037.safetensors +3 -0
- model-00020-of-00037.safetensors +3 -0
- model-00021-of-00037.safetensors +3 -0
- model-00022-of-00037.safetensors +3 -0
- model-00023-of-00037.safetensors +3 -0
- model-00024-of-00037.safetensors +3 -0
- model-00025-of-00037.safetensors +3 -0
- model-00026-of-00037.safetensors +3 -0
- model-00027-of-00037.safetensors +3 -0
- model-00028-of-00037.safetensors +3 -0
- model-00029-of-00037.safetensors +3 -0
- model-00030-of-00037.safetensors +3 -0
- model-00031-of-00037.safetensors +3 -0
- model-00032-of-00037.safetensors +3 -0
- model-00033-of-00037.safetensors +3 -0
- model-00034-of-00037.safetensors +3 -0
- model-00035-of-00037.safetensors +3 -0
- model-00036-of-00037.safetensors +3 -0
- model-00037-of-00037.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modeling_decilm.py +1681 -0
- special_tokens_map.json +16 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2062 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Llama-3.1-Nemotron-Ultra-253B-v1-MLX-Q5
|
2 |
+
|
3 |
+
This is a Q5 quantized version of NVIDIA's Llama-3.1-Nemotron-Ultra-253B-v1 model, converted for use with MLX on Apple Silicon.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
- **Original Model**: nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
|
8 |
+
- **Quantization**: Q5 (5-bit)
|
9 |
+
- **Size**: 163.2GB (Q5 quantized weights)
|
10 |
+
- **Peak Memory Usage**: ~175GB when loaded
|
11 |
+
- **Architecture**: DeciLM (NAS-optimized Llama variant)
|
12 |
+
- **Framework**: MLX 0.26.2+
|
13 |
+
|
14 |
+
## Key Features
|
15 |
+
|
16 |
+
- **Neural Architecture Search (NAS)** optimized model
|
17 |
+
- **Variable Grouped Query Attention (VGQA)**
|
18 |
+
- **FFN Fusion** for improved efficiency
|
19 |
+
- **Dummy layers** for reduced memory footprint
|
20 |
+
- Optimized for Apple Silicon M-series chips
|
21 |
+
|
22 |
+
## Performance
|
23 |
+
|
24 |
+
Tested on Mac Studio M3 Ultra (512GB RAM):
|
25 |
+
- **Speed**: ~3.86 tokens/sec generation
|
26 |
+
- **Prompt Processing**: ~14.3 tokens/sec
|
27 |
+
- **Memory**: Peak usage ~175GB
|
28 |
+
- Works with `mlx_lm` CLI tools (not LM Studio compatible yet)
|
29 |
+
|
30 |
+
## Usage
|
31 |
+
|
32 |
+
### With MLX-LM:
|
33 |
+
```python
|
34 |
+
from mlx_lm import load, generate
|
35 |
+
|
36 |
+
model, tokenizer = load("LibraxisAI/Llama-3_1-Nemotron-Ultra-253B-v1-mlx-q5")
|
37 |
+
response = generate(model, tokenizer, prompt="Your prompt here", verbose=True)
|
38 |
+
```
|
39 |
+
|
40 |
+
### Command Line:
|
41 |
+
```bash
|
42 |
+
uv run mlx_lm.generate \
|
43 |
+
--model LibraxisAI/Llama-3_1-Nemotron-Ultra-253B-v1-mlx-q5 \
|
44 |
+
--prompt "Your prompt here" \
|
45 |
+
--max-tokens 1000
|
46 |
+
```
|
47 |
+
|
48 |
+
## Conversion Details
|
49 |
+
|
50 |
+
- Converted using MLX-LM quantization tools
|
51 |
+
- Q5 quantization with group size 64
|
52 |
+
- Preserved DeciLM architecture specifics
|
53 |
+
|
54 |
+
## License
|
55 |
+
|
56 |
+
Same as the original model - check NVIDIA's license terms.
|
57 |
+
|
58 |
+
## Acknowledgments
|
59 |
+
|
60 |
+
Thanks to NVIDIA for the original Nemotron model and the MLX team for the framework.
|
__init__.py
ADDED
File without changes
|
block_config.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass, MISSING
|
5 |
+
from functools import partial
|
6 |
+
from typing import Optional, Any
|
7 |
+
|
8 |
+
|
9 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
10 |
+
class JsonComparable:
|
11 |
+
def to_json(self) -> str:
|
12 |
+
return json.dumps(dataclasses.asdict(self))
|
13 |
+
|
14 |
+
def __eq__(self, other: "JsonComparable") -> bool:
|
15 |
+
return self.to_json() == other.to_json()
|
16 |
+
|
17 |
+
def __hash__(self) -> int:
|
18 |
+
return hash(self.to_json())
|
19 |
+
|
20 |
+
def __lt__(self, other: "JsonComparable") -> bool:
|
21 |
+
return self.to_json() < other.to_json()
|
22 |
+
|
23 |
+
|
24 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
25 |
+
class SubblockConfig(JsonComparable):
|
26 |
+
no_op: bool = False
|
27 |
+
replace_with_linear: bool = False
|
28 |
+
sparsify: Optional[list[str]] = None
|
29 |
+
|
30 |
+
def __post_init__(self):
|
31 |
+
assert not (self.no_op and self.replace_with_linear)
|
32 |
+
|
33 |
+
def _force_setattr(self, name: str, value: Any) -> None:
|
34 |
+
"""
|
35 |
+
Set an attribute even in frozen dataclasses.
|
36 |
+
Use only inside __post_init__!
|
37 |
+
"""
|
38 |
+
object.__setattr__(self, name, value)
|
39 |
+
|
40 |
+
|
41 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
42 |
+
class AttentionConfig(SubblockConfig):
|
43 |
+
n_heads_in_group: Optional[int] = None
|
44 |
+
window_length: Optional[int] = None
|
45 |
+
num_sink_tokens: Optional[int] = None
|
46 |
+
use_prefill_window_in_sink_attention: bool = False
|
47 |
+
unshifted_sink: bool = False
|
48 |
+
|
49 |
+
def __post_init__(self):
|
50 |
+
super().__post_init__()
|
51 |
+
assert not (self.no_op and self.replace_with_linear)
|
52 |
+
|
53 |
+
if self.no_op or self.replace_with_linear:
|
54 |
+
for irrelevant_att in ["n_heads_in_group", "window_length", "num_sink_tokens"]:
|
55 |
+
self._force_setattr(irrelevant_att, None)
|
56 |
+
else:
|
57 |
+
assert self.n_heads_in_group is not None
|
58 |
+
|
59 |
+
if self.is_sink:
|
60 |
+
assert not (self.unshifted_sink and self.use_prefill_window_in_sink_attention), \
|
61 |
+
("Unshifted sink uses its own kind of explicit masking, not standard window. "
|
62 |
+
"Set use_prefill_window_in_sink_attention to False.")
|
63 |
+
assert not (self.num_sink_tokens == 0 and not self.unshifted_sink), \
|
64 |
+
"Fake sink attention with 0 sink tokens is only supported with unshifted_sink=True"
|
65 |
+
|
66 |
+
@property
|
67 |
+
def prefill_sliding_window(self) -> Optional[int]:
|
68 |
+
if self.window_length is not None:
|
69 |
+
if not self.is_sink or self.use_prefill_window_in_sink_attention:
|
70 |
+
return self.window_length
|
71 |
+
return None
|
72 |
+
|
73 |
+
@property
|
74 |
+
def is_sliding(self) -> bool:
|
75 |
+
return self.prefill_sliding_window is not None
|
76 |
+
|
77 |
+
@property
|
78 |
+
def is_sink(self) -> bool:
|
79 |
+
return (
|
80 |
+
(self.window_length is not None)
|
81 |
+
and
|
82 |
+
(self.num_sink_tokens is not None)
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
87 |
+
class FFNConfig(SubblockConfig):
|
88 |
+
ffn_mult: Optional[float] = None
|
89 |
+
|
90 |
+
def __post_init__(self):
|
91 |
+
super().__post_init__()
|
92 |
+
if self.no_op or self.replace_with_linear:
|
93 |
+
self._force_setattr("ffn_mult", None)
|
94 |
+
else:
|
95 |
+
assert self.ffn_mult is not None
|
96 |
+
self._force_setattr("ffn_mult", round(self.ffn_mult, 6))
|
97 |
+
|
98 |
+
|
99 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
100 |
+
class BlockConfig(JsonComparable):
|
101 |
+
attention: AttentionConfig = MISSING
|
102 |
+
ffn: FFNConfig = MISSING
|
103 |
+
|
104 |
+
def __post_init__(self):
|
105 |
+
"""
|
106 |
+
Init subblock dataclasses from dicts
|
107 |
+
"""
|
108 |
+
for subblock_name in dataclasses.fields(self):
|
109 |
+
subblock_config = getattr(self, subblock_name.name)
|
110 |
+
if isinstance(subblock_config, dict):
|
111 |
+
subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
|
112 |
+
unsupported_fields = [field_name for field_name in subblock_config.keys()
|
113 |
+
if field_name not in subblock_fields]
|
114 |
+
if len(unsupported_fields) > 0:
|
115 |
+
warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
|
116 |
+
subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
|
117 |
+
object.__setattr__(self, subblock_name.name,
|
118 |
+
subblock_name.type(**subblock_config)) # __setattr__ to overcome frozen=True
|
chat_template.jinja
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{{- bos_token }}{%- if messages[0]['role'] == 'system' %}{%- set system_message = messages[0]['content']|trim %}{%- set messages = messages[1:] %}{%- else %}{%- set system_message = "detailed thinking on" %}{%- endif %}{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}{{- system_message }}{{- "<|eot_id|>" }}{%- for message in messages %}{%- if message['role'] == 'assistant' and '</think>' in message['content'] %}{%- set content = message['content'].split('</think>')[-1].lstrip() %}{%- else %}{%- set content = message['content'] %}{%- endif %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + content | trim + '<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,2968 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DeciLMForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_decilm.DeciLMConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
|
10 |
+
},
|
11 |
+
"block_configs": [
|
12 |
+
{
|
13 |
+
"attention": {
|
14 |
+
"n_heads_in_group": 16,
|
15 |
+
"no_op": false,
|
16 |
+
"num_sink_tokens": null,
|
17 |
+
"replace_with_linear": false,
|
18 |
+
"sparsify": null,
|
19 |
+
"unshifted_sink": false,
|
20 |
+
"use_prefill_window_in_sink_attention": false,
|
21 |
+
"window_length": null
|
22 |
+
},
|
23 |
+
"ffn": {
|
24 |
+
"ffn_mult": 0.4875,
|
25 |
+
"no_op": false,
|
26 |
+
"replace_with_linear": false,
|
27 |
+
"sparsify": null
|
28 |
+
}
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"attention": {
|
32 |
+
"n_heads_in_group": 16,
|
33 |
+
"no_op": false,
|
34 |
+
"num_sink_tokens": null,
|
35 |
+
"replace_with_linear": false,
|
36 |
+
"sparsify": null,
|
37 |
+
"unshifted_sink": false,
|
38 |
+
"use_prefill_window_in_sink_attention": false,
|
39 |
+
"window_length": null
|
40 |
+
},
|
41 |
+
"ffn": {
|
42 |
+
"ffn_mult": 0.975,
|
43 |
+
"no_op": false,
|
44 |
+
"replace_with_linear": false,
|
45 |
+
"sparsify": null
|
46 |
+
}
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"attention": {
|
50 |
+
"n_heads_in_group": 16,
|
51 |
+
"no_op": false,
|
52 |
+
"num_sink_tokens": null,
|
53 |
+
"replace_with_linear": false,
|
54 |
+
"sparsify": null,
|
55 |
+
"unshifted_sink": false,
|
56 |
+
"use_prefill_window_in_sink_attention": false,
|
57 |
+
"window_length": null
|
58 |
+
},
|
59 |
+
"ffn": {
|
60 |
+
"ffn_mult": 1.4625,
|
61 |
+
"no_op": false,
|
62 |
+
"replace_with_linear": false,
|
63 |
+
"sparsify": null
|
64 |
+
}
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"attention": {
|
68 |
+
"n_heads_in_group": 16,
|
69 |
+
"no_op": false,
|
70 |
+
"num_sink_tokens": null,
|
71 |
+
"replace_with_linear": false,
|
72 |
+
"sparsify": null,
|
73 |
+
"unshifted_sink": false,
|
74 |
+
"use_prefill_window_in_sink_attention": false,
|
75 |
+
"window_length": null
|
76 |
+
},
|
77 |
+
"ffn": {
|
78 |
+
"ffn_mult": 1.4625,
|
79 |
+
"no_op": false,
|
80 |
+
"replace_with_linear": false,
|
81 |
+
"sparsify": null
|
82 |
+
}
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"attention": {
|
86 |
+
"n_heads_in_group": 16,
|
87 |
+
"no_op": false,
|
88 |
+
"num_sink_tokens": null,
|
89 |
+
"replace_with_linear": false,
|
90 |
+
"sparsify": null,
|
91 |
+
"unshifted_sink": false,
|
92 |
+
"use_prefill_window_in_sink_attention": false,
|
93 |
+
"window_length": null
|
94 |
+
},
|
95 |
+
"ffn": {
|
96 |
+
"ffn_mult": 1.4625,
|
97 |
+
"no_op": false,
|
98 |
+
"replace_with_linear": false,
|
99 |
+
"sparsify": null
|
100 |
+
}
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"attention": {
|
104 |
+
"n_heads_in_group": 16,
|
105 |
+
"no_op": false,
|
106 |
+
"num_sink_tokens": null,
|
107 |
+
"replace_with_linear": false,
|
108 |
+
"sparsify": null,
|
109 |
+
"unshifted_sink": false,
|
110 |
+
"use_prefill_window_in_sink_attention": false,
|
111 |
+
"window_length": null
|
112 |
+
},
|
113 |
+
"ffn": {
|
114 |
+
"ffn_mult": 1.4625,
|
115 |
+
"no_op": false,
|
116 |
+
"replace_with_linear": false,
|
117 |
+
"sparsify": null
|
118 |
+
}
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"attention": {
|
122 |
+
"n_heads_in_group": 16,
|
123 |
+
"no_op": false,
|
124 |
+
"num_sink_tokens": null,
|
125 |
+
"replace_with_linear": false,
|
126 |
+
"sparsify": null,
|
127 |
+
"unshifted_sink": false,
|
128 |
+
"use_prefill_window_in_sink_attention": false,
|
129 |
+
"window_length": null
|
130 |
+
},
|
131 |
+
"ffn": {
|
132 |
+
"ffn_mult": 1.4625,
|
133 |
+
"no_op": false,
|
134 |
+
"replace_with_linear": false,
|
135 |
+
"sparsify": null
|
136 |
+
}
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"attention": {
|
140 |
+
"n_heads_in_group": 16,
|
141 |
+
"no_op": false,
|
142 |
+
"num_sink_tokens": null,
|
143 |
+
"replace_with_linear": false,
|
144 |
+
"sparsify": null,
|
145 |
+
"unshifted_sink": false,
|
146 |
+
"use_prefill_window_in_sink_attention": false,
|
147 |
+
"window_length": null
|
148 |
+
},
|
149 |
+
"ffn": {
|
150 |
+
"ffn_mult": 1.4625,
|
151 |
+
"no_op": false,
|
152 |
+
"replace_with_linear": false,
|
153 |
+
"sparsify": null
|
154 |
+
}
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"attention": {
|
158 |
+
"n_heads_in_group": 16,
|
159 |
+
"no_op": false,
|
160 |
+
"num_sink_tokens": null,
|
161 |
+
"replace_with_linear": false,
|
162 |
+
"sparsify": null,
|
163 |
+
"unshifted_sink": false,
|
164 |
+
"use_prefill_window_in_sink_attention": false,
|
165 |
+
"window_length": null
|
166 |
+
},
|
167 |
+
"ffn": {
|
168 |
+
"ffn_mult": 1.95,
|
169 |
+
"no_op": false,
|
170 |
+
"replace_with_linear": false,
|
171 |
+
"sparsify": null
|
172 |
+
}
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"attention": {
|
176 |
+
"n_heads_in_group": null,
|
177 |
+
"no_op": true,
|
178 |
+
"num_sink_tokens": null,
|
179 |
+
"replace_with_linear": false,
|
180 |
+
"sparsify": null,
|
181 |
+
"unshifted_sink": false,
|
182 |
+
"use_prefill_window_in_sink_attention": false,
|
183 |
+
"window_length": null
|
184 |
+
},
|
185 |
+
"ffn": {
|
186 |
+
"ffn_mult": null,
|
187 |
+
"no_op": true,
|
188 |
+
"replace_with_linear": false,
|
189 |
+
"sparsify": null
|
190 |
+
}
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"attention": {
|
194 |
+
"n_heads_in_group": null,
|
195 |
+
"no_op": true,
|
196 |
+
"num_sink_tokens": null,
|
197 |
+
"replace_with_linear": false,
|
198 |
+
"sparsify": null,
|
199 |
+
"unshifted_sink": false,
|
200 |
+
"use_prefill_window_in_sink_attention": false,
|
201 |
+
"window_length": null
|
202 |
+
},
|
203 |
+
"ffn": {
|
204 |
+
"ffn_mult": null,
|
205 |
+
"no_op": true,
|
206 |
+
"replace_with_linear": false,
|
207 |
+
"sparsify": null
|
208 |
+
}
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"attention": {
|
212 |
+
"n_heads_in_group": null,
|
213 |
+
"no_op": true,
|
214 |
+
"num_sink_tokens": null,
|
215 |
+
"replace_with_linear": false,
|
216 |
+
"sparsify": null,
|
217 |
+
"unshifted_sink": false,
|
218 |
+
"use_prefill_window_in_sink_attention": false,
|
219 |
+
"window_length": null
|
220 |
+
},
|
221 |
+
"ffn": {
|
222 |
+
"ffn_mult": null,
|
223 |
+
"no_op": true,
|
224 |
+
"replace_with_linear": false,
|
225 |
+
"sparsify": null
|
226 |
+
}
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"attention": {
|
230 |
+
"n_heads_in_group": null,
|
231 |
+
"no_op": true,
|
232 |
+
"num_sink_tokens": null,
|
233 |
+
"replace_with_linear": false,
|
234 |
+
"sparsify": null,
|
235 |
+
"unshifted_sink": false,
|
236 |
+
"use_prefill_window_in_sink_attention": false,
|
237 |
+
"window_length": null
|
238 |
+
},
|
239 |
+
"ffn": {
|
240 |
+
"ffn_mult": null,
|
241 |
+
"no_op": true,
|
242 |
+
"replace_with_linear": false,
|
243 |
+
"sparsify": null
|
244 |
+
}
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"attention": {
|
248 |
+
"n_heads_in_group": 16,
|
249 |
+
"no_op": false,
|
250 |
+
"num_sink_tokens": null,
|
251 |
+
"replace_with_linear": false,
|
252 |
+
"sparsify": null,
|
253 |
+
"unshifted_sink": false,
|
254 |
+
"use_prefill_window_in_sink_attention": false,
|
255 |
+
"window_length": null
|
256 |
+
},
|
257 |
+
"ffn": {
|
258 |
+
"ffn_mult": 1.95,
|
259 |
+
"no_op": false,
|
260 |
+
"replace_with_linear": false,
|
261 |
+
"sparsify": null
|
262 |
+
}
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"attention": {
|
266 |
+
"n_heads_in_group": 16,
|
267 |
+
"no_op": false,
|
268 |
+
"num_sink_tokens": null,
|
269 |
+
"replace_with_linear": false,
|
270 |
+
"sparsify": null,
|
271 |
+
"unshifted_sink": false,
|
272 |
+
"use_prefill_window_in_sink_attention": false,
|
273 |
+
"window_length": null
|
274 |
+
},
|
275 |
+
"ffn": {
|
276 |
+
"ffn_mult": 1.95,
|
277 |
+
"no_op": false,
|
278 |
+
"replace_with_linear": false,
|
279 |
+
"sparsify": null
|
280 |
+
}
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"attention": {
|
284 |
+
"n_heads_in_group": 16,
|
285 |
+
"no_op": false,
|
286 |
+
"num_sink_tokens": null,
|
287 |
+
"replace_with_linear": false,
|
288 |
+
"sparsify": null,
|
289 |
+
"unshifted_sink": false,
|
290 |
+
"use_prefill_window_in_sink_attention": false,
|
291 |
+
"window_length": null
|
292 |
+
},
|
293 |
+
"ffn": {
|
294 |
+
"ffn_mult": 1.95,
|
295 |
+
"no_op": false,
|
296 |
+
"replace_with_linear": false,
|
297 |
+
"sparsify": null
|
298 |
+
}
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"attention": {
|
302 |
+
"n_heads_in_group": 16,
|
303 |
+
"no_op": false,
|
304 |
+
"num_sink_tokens": null,
|
305 |
+
"replace_with_linear": false,
|
306 |
+
"sparsify": null,
|
307 |
+
"unshifted_sink": false,
|
308 |
+
"use_prefill_window_in_sink_attention": false,
|
309 |
+
"window_length": null
|
310 |
+
},
|
311 |
+
"ffn": {
|
312 |
+
"ffn_mult": 4.875,
|
313 |
+
"no_op": false,
|
314 |
+
"replace_with_linear": false,
|
315 |
+
"sparsify": null
|
316 |
+
}
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"attention": {
|
320 |
+
"n_heads_in_group": 16,
|
321 |
+
"no_op": false,
|
322 |
+
"num_sink_tokens": null,
|
323 |
+
"replace_with_linear": false,
|
324 |
+
"sparsify": null,
|
325 |
+
"unshifted_sink": false,
|
326 |
+
"use_prefill_window_in_sink_attention": false,
|
327 |
+
"window_length": null
|
328 |
+
},
|
329 |
+
"ffn": {
|
330 |
+
"ffn_mult": 4.875,
|
331 |
+
"no_op": false,
|
332 |
+
"replace_with_linear": false,
|
333 |
+
"sparsify": null
|
334 |
+
}
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"attention": {
|
338 |
+
"n_heads_in_group": null,
|
339 |
+
"no_op": true,
|
340 |
+
"num_sink_tokens": null,
|
341 |
+
"replace_with_linear": false,
|
342 |
+
"sparsify": null,
|
343 |
+
"unshifted_sink": false,
|
344 |
+
"use_prefill_window_in_sink_attention": false,
|
345 |
+
"window_length": null
|
346 |
+
},
|
347 |
+
"ffn": {
|
348 |
+
"ffn_mult": null,
|
349 |
+
"no_op": true,
|
350 |
+
"replace_with_linear": false,
|
351 |
+
"sparsify": null
|
352 |
+
}
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"attention": {
|
356 |
+
"n_heads_in_group": null,
|
357 |
+
"no_op": true,
|
358 |
+
"num_sink_tokens": null,
|
359 |
+
"replace_with_linear": false,
|
360 |
+
"sparsify": null,
|
361 |
+
"unshifted_sink": false,
|
362 |
+
"use_prefill_window_in_sink_attention": false,
|
363 |
+
"window_length": null
|
364 |
+
},
|
365 |
+
"ffn": {
|
366 |
+
"ffn_mult": null,
|
367 |
+
"no_op": true,
|
368 |
+
"replace_with_linear": false,
|
369 |
+
"sparsify": null
|
370 |
+
}
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"attention": {
|
374 |
+
"n_heads_in_group": null,
|
375 |
+
"no_op": true,
|
376 |
+
"num_sink_tokens": null,
|
377 |
+
"replace_with_linear": false,
|
378 |
+
"sparsify": null,
|
379 |
+
"unshifted_sink": false,
|
380 |
+
"use_prefill_window_in_sink_attention": false,
|
381 |
+
"window_length": null
|
382 |
+
},
|
383 |
+
"ffn": {
|
384 |
+
"ffn_mult": null,
|
385 |
+
"no_op": true,
|
386 |
+
"replace_with_linear": false,
|
387 |
+
"sparsify": null
|
388 |
+
}
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"attention": {
|
392 |
+
"n_heads_in_group": null,
|
393 |
+
"no_op": true,
|
394 |
+
"num_sink_tokens": null,
|
395 |
+
"replace_with_linear": false,
|
396 |
+
"sparsify": null,
|
397 |
+
"unshifted_sink": false,
|
398 |
+
"use_prefill_window_in_sink_attention": false,
|
399 |
+
"window_length": null
|
400 |
+
},
|
401 |
+
"ffn": {
|
402 |
+
"ffn_mult": null,
|
403 |
+
"no_op": true,
|
404 |
+
"replace_with_linear": false,
|
405 |
+
"sparsify": null
|
406 |
+
}
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"attention": {
|
410 |
+
"n_heads_in_group": null,
|
411 |
+
"no_op": true,
|
412 |
+
"num_sink_tokens": null,
|
413 |
+
"replace_with_linear": false,
|
414 |
+
"sparsify": null,
|
415 |
+
"unshifted_sink": false,
|
416 |
+
"use_prefill_window_in_sink_attention": false,
|
417 |
+
"window_length": null
|
418 |
+
},
|
419 |
+
"ffn": {
|
420 |
+
"ffn_mult": null,
|
421 |
+
"no_op": true,
|
422 |
+
"replace_with_linear": false,
|
423 |
+
"sparsify": null
|
424 |
+
}
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"attention": {
|
428 |
+
"n_heads_in_group": null,
|
429 |
+
"no_op": true,
|
430 |
+
"num_sink_tokens": null,
|
431 |
+
"replace_with_linear": false,
|
432 |
+
"sparsify": null,
|
433 |
+
"unshifted_sink": false,
|
434 |
+
"use_prefill_window_in_sink_attention": false,
|
435 |
+
"window_length": null
|
436 |
+
},
|
437 |
+
"ffn": {
|
438 |
+
"ffn_mult": null,
|
439 |
+
"no_op": true,
|
440 |
+
"replace_with_linear": false,
|
441 |
+
"sparsify": null
|
442 |
+
}
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"attention": {
|
446 |
+
"n_heads_in_group": 16,
|
447 |
+
"no_op": false,
|
448 |
+
"num_sink_tokens": null,
|
449 |
+
"replace_with_linear": false,
|
450 |
+
"sparsify": null,
|
451 |
+
"unshifted_sink": false,
|
452 |
+
"use_prefill_window_in_sink_attention": false,
|
453 |
+
"window_length": null
|
454 |
+
},
|
455 |
+
"ffn": {
|
456 |
+
"ffn_mult": 4.875,
|
457 |
+
"no_op": false,
|
458 |
+
"replace_with_linear": false,
|
459 |
+
"sparsify": null
|
460 |
+
}
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"attention": {
|
464 |
+
"n_heads_in_group": 16,
|
465 |
+
"no_op": false,
|
466 |
+
"num_sink_tokens": null,
|
467 |
+
"replace_with_linear": false,
|
468 |
+
"sparsify": null,
|
469 |
+
"unshifted_sink": false,
|
470 |
+
"use_prefill_window_in_sink_attention": false,
|
471 |
+
"window_length": null
|
472 |
+
},
|
473 |
+
"ffn": {
|
474 |
+
"ffn_mult": 4.875,
|
475 |
+
"no_op": false,
|
476 |
+
"replace_with_linear": false,
|
477 |
+
"sparsify": null
|
478 |
+
}
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"attention": {
|
482 |
+
"n_heads_in_group": 16,
|
483 |
+
"no_op": false,
|
484 |
+
"num_sink_tokens": null,
|
485 |
+
"replace_with_linear": false,
|
486 |
+
"sparsify": null,
|
487 |
+
"unshifted_sink": false,
|
488 |
+
"use_prefill_window_in_sink_attention": false,
|
489 |
+
"window_length": null
|
490 |
+
},
|
491 |
+
"ffn": {
|
492 |
+
"ffn_mult": 4.875,
|
493 |
+
"no_op": false,
|
494 |
+
"replace_with_linear": false,
|
495 |
+
"sparsify": null
|
496 |
+
}
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"attention": {
|
500 |
+
"n_heads_in_group": null,
|
501 |
+
"no_op": true,
|
502 |
+
"num_sink_tokens": null,
|
503 |
+
"replace_with_linear": false,
|
504 |
+
"sparsify": null,
|
505 |
+
"unshifted_sink": false,
|
506 |
+
"use_prefill_window_in_sink_attention": false,
|
507 |
+
"window_length": null
|
508 |
+
},
|
509 |
+
"ffn": {
|
510 |
+
"ffn_mult": null,
|
511 |
+
"no_op": true,
|
512 |
+
"replace_with_linear": false,
|
513 |
+
"sparsify": null
|
514 |
+
}
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"attention": {
|
518 |
+
"n_heads_in_group": null,
|
519 |
+
"no_op": true,
|
520 |
+
"num_sink_tokens": null,
|
521 |
+
"replace_with_linear": false,
|
522 |
+
"sparsify": null,
|
523 |
+
"unshifted_sink": false,
|
524 |
+
"use_prefill_window_in_sink_attention": false,
|
525 |
+
"window_length": null
|
526 |
+
},
|
527 |
+
"ffn": {
|
528 |
+
"ffn_mult": null,
|
529 |
+
"no_op": true,
|
530 |
+
"replace_with_linear": false,
|
531 |
+
"sparsify": null
|
532 |
+
}
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"attention": {
|
536 |
+
"n_heads_in_group": null,
|
537 |
+
"no_op": true,
|
538 |
+
"num_sink_tokens": null,
|
539 |
+
"replace_with_linear": false,
|
540 |
+
"sparsify": null,
|
541 |
+
"unshifted_sink": false,
|
542 |
+
"use_prefill_window_in_sink_attention": false,
|
543 |
+
"window_length": null
|
544 |
+
},
|
545 |
+
"ffn": {
|
546 |
+
"ffn_mult": null,
|
547 |
+
"no_op": true,
|
548 |
+
"replace_with_linear": false,
|
549 |
+
"sparsify": null
|
550 |
+
}
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"attention": {
|
554 |
+
"n_heads_in_group": null,
|
555 |
+
"no_op": true,
|
556 |
+
"num_sink_tokens": null,
|
557 |
+
"replace_with_linear": false,
|
558 |
+
"sparsify": null,
|
559 |
+
"unshifted_sink": false,
|
560 |
+
"use_prefill_window_in_sink_attention": false,
|
561 |
+
"window_length": null
|
562 |
+
},
|
563 |
+
"ffn": {
|
564 |
+
"ffn_mult": null,
|
565 |
+
"no_op": true,
|
566 |
+
"replace_with_linear": false,
|
567 |
+
"sparsify": null
|
568 |
+
}
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"attention": {
|
572 |
+
"n_heads_in_group": null,
|
573 |
+
"no_op": true,
|
574 |
+
"num_sink_tokens": null,
|
575 |
+
"replace_with_linear": false,
|
576 |
+
"sparsify": null,
|
577 |
+
"unshifted_sink": false,
|
578 |
+
"use_prefill_window_in_sink_attention": false,
|
579 |
+
"window_length": null
|
580 |
+
},
|
581 |
+
"ffn": {
|
582 |
+
"ffn_mult": null,
|
583 |
+
"no_op": true,
|
584 |
+
"replace_with_linear": false,
|
585 |
+
"sparsify": null
|
586 |
+
}
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"attention": {
|
590 |
+
"n_heads_in_group": 16,
|
591 |
+
"no_op": false,
|
592 |
+
"num_sink_tokens": null,
|
593 |
+
"replace_with_linear": false,
|
594 |
+
"sparsify": null,
|
595 |
+
"unshifted_sink": false,
|
596 |
+
"use_prefill_window_in_sink_attention": false,
|
597 |
+
"window_length": null
|
598 |
+
},
|
599 |
+
"ffn": {
|
600 |
+
"ffn_mult": 4.875,
|
601 |
+
"no_op": false,
|
602 |
+
"replace_with_linear": false,
|
603 |
+
"sparsify": null
|
604 |
+
}
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"attention": {
|
608 |
+
"n_heads_in_group": 16,
|
609 |
+
"no_op": false,
|
610 |
+
"num_sink_tokens": null,
|
611 |
+
"replace_with_linear": false,
|
612 |
+
"sparsify": null,
|
613 |
+
"unshifted_sink": false,
|
614 |
+
"use_prefill_window_in_sink_attention": false,
|
615 |
+
"window_length": null
|
616 |
+
},
|
617 |
+
"ffn": {
|
618 |
+
"ffn_mult": 4.875,
|
619 |
+
"no_op": false,
|
620 |
+
"replace_with_linear": false,
|
621 |
+
"sparsify": null
|
622 |
+
}
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"attention": {
|
626 |
+
"n_heads_in_group": 16,
|
627 |
+
"no_op": false,
|
628 |
+
"num_sink_tokens": null,
|
629 |
+
"replace_with_linear": false,
|
630 |
+
"sparsify": null,
|
631 |
+
"unshifted_sink": false,
|
632 |
+
"use_prefill_window_in_sink_attention": false,
|
633 |
+
"window_length": null
|
634 |
+
},
|
635 |
+
"ffn": {
|
636 |
+
"ffn_mult": 4.875,
|
637 |
+
"no_op": false,
|
638 |
+
"replace_with_linear": false,
|
639 |
+
"sparsify": null
|
640 |
+
}
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"attention": {
|
644 |
+
"n_heads_in_group": 16,
|
645 |
+
"no_op": false,
|
646 |
+
"num_sink_tokens": null,
|
647 |
+
"replace_with_linear": false,
|
648 |
+
"sparsify": null,
|
649 |
+
"unshifted_sink": false,
|
650 |
+
"use_prefill_window_in_sink_attention": false,
|
651 |
+
"window_length": null
|
652 |
+
},
|
653 |
+
"ffn": {
|
654 |
+
"ffn_mult": 2.4375,
|
655 |
+
"no_op": false,
|
656 |
+
"replace_with_linear": false,
|
657 |
+
"sparsify": null
|
658 |
+
}
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"attention": {
|
662 |
+
"n_heads_in_group": null,
|
663 |
+
"no_op": true,
|
664 |
+
"num_sink_tokens": null,
|
665 |
+
"replace_with_linear": false,
|
666 |
+
"sparsify": null,
|
667 |
+
"unshifted_sink": false,
|
668 |
+
"use_prefill_window_in_sink_attention": false,
|
669 |
+
"window_length": null
|
670 |
+
},
|
671 |
+
"ffn": {
|
672 |
+
"ffn_mult": null,
|
673 |
+
"no_op": true,
|
674 |
+
"replace_with_linear": false,
|
675 |
+
"sparsify": null
|
676 |
+
}
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"attention": {
|
680 |
+
"n_heads_in_group": null,
|
681 |
+
"no_op": true,
|
682 |
+
"num_sink_tokens": null,
|
683 |
+
"replace_with_linear": false,
|
684 |
+
"sparsify": null,
|
685 |
+
"unshifted_sink": false,
|
686 |
+
"use_prefill_window_in_sink_attention": false,
|
687 |
+
"window_length": null
|
688 |
+
},
|
689 |
+
"ffn": {
|
690 |
+
"ffn_mult": null,
|
691 |
+
"no_op": true,
|
692 |
+
"replace_with_linear": false,
|
693 |
+
"sparsify": null
|
694 |
+
}
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"attention": {
|
698 |
+
"n_heads_in_group": null,
|
699 |
+
"no_op": true,
|
700 |
+
"num_sink_tokens": null,
|
701 |
+
"replace_with_linear": false,
|
702 |
+
"sparsify": null,
|
703 |
+
"unshifted_sink": false,
|
704 |
+
"use_prefill_window_in_sink_attention": false,
|
705 |
+
"window_length": null
|
706 |
+
},
|
707 |
+
"ffn": {
|
708 |
+
"ffn_mult": null,
|
709 |
+
"no_op": true,
|
710 |
+
"replace_with_linear": false,
|
711 |
+
"sparsify": null
|
712 |
+
}
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"attention": {
|
716 |
+
"n_heads_in_group": 16,
|
717 |
+
"no_op": false,
|
718 |
+
"num_sink_tokens": null,
|
719 |
+
"replace_with_linear": false,
|
720 |
+
"sparsify": null,
|
721 |
+
"unshifted_sink": false,
|
722 |
+
"use_prefill_window_in_sink_attention": false,
|
723 |
+
"window_length": null
|
724 |
+
},
|
725 |
+
"ffn": {
|
726 |
+
"ffn_mult": 1.95,
|
727 |
+
"no_op": false,
|
728 |
+
"replace_with_linear": false,
|
729 |
+
"sparsify": null
|
730 |
+
}
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"attention": {
|
734 |
+
"n_heads_in_group": 16,
|
735 |
+
"no_op": false,
|
736 |
+
"num_sink_tokens": null,
|
737 |
+
"replace_with_linear": false,
|
738 |
+
"sparsify": null,
|
739 |
+
"unshifted_sink": false,
|
740 |
+
"use_prefill_window_in_sink_attention": false,
|
741 |
+
"window_length": null
|
742 |
+
},
|
743 |
+
"ffn": {
|
744 |
+
"ffn_mult": 1.95,
|
745 |
+
"no_op": false,
|
746 |
+
"replace_with_linear": false,
|
747 |
+
"sparsify": null
|
748 |
+
}
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"attention": {
|
752 |
+
"n_heads_in_group": 16,
|
753 |
+
"no_op": false,
|
754 |
+
"num_sink_tokens": null,
|
755 |
+
"replace_with_linear": false,
|
756 |
+
"sparsify": null,
|
757 |
+
"unshifted_sink": false,
|
758 |
+
"use_prefill_window_in_sink_attention": false,
|
759 |
+
"window_length": null
|
760 |
+
},
|
761 |
+
"ffn": {
|
762 |
+
"ffn_mult": 1.95,
|
763 |
+
"no_op": false,
|
764 |
+
"replace_with_linear": false,
|
765 |
+
"sparsify": null
|
766 |
+
}
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"attention": {
|
770 |
+
"n_heads_in_group": null,
|
771 |
+
"no_op": true,
|
772 |
+
"num_sink_tokens": null,
|
773 |
+
"replace_with_linear": false,
|
774 |
+
"sparsify": null,
|
775 |
+
"unshifted_sink": false,
|
776 |
+
"use_prefill_window_in_sink_attention": false,
|
777 |
+
"window_length": null
|
778 |
+
},
|
779 |
+
"ffn": {
|
780 |
+
"ffn_mult": 1.95,
|
781 |
+
"no_op": false,
|
782 |
+
"replace_with_linear": false,
|
783 |
+
"sparsify": null
|
784 |
+
}
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"attention": {
|
788 |
+
"n_heads_in_group": 16,
|
789 |
+
"no_op": false,
|
790 |
+
"num_sink_tokens": null,
|
791 |
+
"replace_with_linear": false,
|
792 |
+
"sparsify": null,
|
793 |
+
"unshifted_sink": false,
|
794 |
+
"use_prefill_window_in_sink_attention": false,
|
795 |
+
"window_length": null
|
796 |
+
},
|
797 |
+
"ffn": {
|
798 |
+
"ffn_mult": 4.875,
|
799 |
+
"no_op": false,
|
800 |
+
"replace_with_linear": false,
|
801 |
+
"sparsify": null
|
802 |
+
}
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"attention": {
|
806 |
+
"n_heads_in_group": null,
|
807 |
+
"no_op": true,
|
808 |
+
"num_sink_tokens": null,
|
809 |
+
"replace_with_linear": false,
|
810 |
+
"sparsify": null,
|
811 |
+
"unshifted_sink": false,
|
812 |
+
"use_prefill_window_in_sink_attention": false,
|
813 |
+
"window_length": null
|
814 |
+
},
|
815 |
+
"ffn": {
|
816 |
+
"ffn_mult": 4.875,
|
817 |
+
"no_op": false,
|
818 |
+
"replace_with_linear": false,
|
819 |
+
"sparsify": null
|
820 |
+
}
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"attention": {
|
824 |
+
"n_heads_in_group": null,
|
825 |
+
"no_op": true,
|
826 |
+
"num_sink_tokens": null,
|
827 |
+
"replace_with_linear": false,
|
828 |
+
"sparsify": null,
|
829 |
+
"unshifted_sink": false,
|
830 |
+
"use_prefill_window_in_sink_attention": false,
|
831 |
+
"window_length": null
|
832 |
+
},
|
833 |
+
"ffn": {
|
834 |
+
"ffn_mult": null,
|
835 |
+
"no_op": true,
|
836 |
+
"replace_with_linear": false,
|
837 |
+
"sparsify": null
|
838 |
+
}
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"attention": {
|
842 |
+
"n_heads_in_group": null,
|
843 |
+
"no_op": true,
|
844 |
+
"num_sink_tokens": null,
|
845 |
+
"replace_with_linear": false,
|
846 |
+
"sparsify": null,
|
847 |
+
"unshifted_sink": false,
|
848 |
+
"use_prefill_window_in_sink_attention": false,
|
849 |
+
"window_length": null
|
850 |
+
},
|
851 |
+
"ffn": {
|
852 |
+
"ffn_mult": null,
|
853 |
+
"no_op": true,
|
854 |
+
"replace_with_linear": false,
|
855 |
+
"sparsify": null
|
856 |
+
}
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"attention": {
|
860 |
+
"n_heads_in_group": null,
|
861 |
+
"no_op": true,
|
862 |
+
"num_sink_tokens": null,
|
863 |
+
"replace_with_linear": false,
|
864 |
+
"sparsify": null,
|
865 |
+
"unshifted_sink": false,
|
866 |
+
"use_prefill_window_in_sink_attention": false,
|
867 |
+
"window_length": null
|
868 |
+
},
|
869 |
+
"ffn": {
|
870 |
+
"ffn_mult": null,
|
871 |
+
"no_op": true,
|
872 |
+
"replace_with_linear": false,
|
873 |
+
"sparsify": null
|
874 |
+
}
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"attention": {
|
878 |
+
"n_heads_in_group": null,
|
879 |
+
"no_op": true,
|
880 |
+
"num_sink_tokens": null,
|
881 |
+
"replace_with_linear": false,
|
882 |
+
"sparsify": null,
|
883 |
+
"unshifted_sink": false,
|
884 |
+
"use_prefill_window_in_sink_attention": false,
|
885 |
+
"window_length": null
|
886 |
+
},
|
887 |
+
"ffn": {
|
888 |
+
"ffn_mult": null,
|
889 |
+
"no_op": true,
|
890 |
+
"replace_with_linear": false,
|
891 |
+
"sparsify": null
|
892 |
+
}
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"attention": {
|
896 |
+
"n_heads_in_group": null,
|
897 |
+
"no_op": true,
|
898 |
+
"num_sink_tokens": null,
|
899 |
+
"replace_with_linear": false,
|
900 |
+
"sparsify": null,
|
901 |
+
"unshifted_sink": false,
|
902 |
+
"use_prefill_window_in_sink_attention": false,
|
903 |
+
"window_length": null
|
904 |
+
},
|
905 |
+
"ffn": {
|
906 |
+
"ffn_mult": null,
|
907 |
+
"no_op": true,
|
908 |
+
"replace_with_linear": false,
|
909 |
+
"sparsify": null
|
910 |
+
}
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"attention": {
|
914 |
+
"n_heads_in_group": 16,
|
915 |
+
"no_op": false,
|
916 |
+
"num_sink_tokens": null,
|
917 |
+
"replace_with_linear": false,
|
918 |
+
"sparsify": null,
|
919 |
+
"unshifted_sink": false,
|
920 |
+
"use_prefill_window_in_sink_attention": false,
|
921 |
+
"window_length": null
|
922 |
+
},
|
923 |
+
"ffn": {
|
924 |
+
"ffn_mult": 4.875,
|
925 |
+
"no_op": false,
|
926 |
+
"replace_with_linear": false,
|
927 |
+
"sparsify": null
|
928 |
+
}
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"attention": {
|
932 |
+
"n_heads_in_group": 16,
|
933 |
+
"no_op": false,
|
934 |
+
"num_sink_tokens": null,
|
935 |
+
"replace_with_linear": false,
|
936 |
+
"sparsify": null,
|
937 |
+
"unshifted_sink": false,
|
938 |
+
"use_prefill_window_in_sink_attention": false,
|
939 |
+
"window_length": null
|
940 |
+
},
|
941 |
+
"ffn": {
|
942 |
+
"ffn_mult": 4.875,
|
943 |
+
"no_op": false,
|
944 |
+
"replace_with_linear": false,
|
945 |
+
"sparsify": null
|
946 |
+
}
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"attention": {
|
950 |
+
"n_heads_in_group": 16,
|
951 |
+
"no_op": false,
|
952 |
+
"num_sink_tokens": null,
|
953 |
+
"replace_with_linear": false,
|
954 |
+
"sparsify": null,
|
955 |
+
"unshifted_sink": false,
|
956 |
+
"use_prefill_window_in_sink_attention": false,
|
957 |
+
"window_length": null
|
958 |
+
},
|
959 |
+
"ffn": {
|
960 |
+
"ffn_mult": 4.875,
|
961 |
+
"no_op": false,
|
962 |
+
"replace_with_linear": false,
|
963 |
+
"sparsify": null
|
964 |
+
}
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"attention": {
|
968 |
+
"n_heads_in_group": 16,
|
969 |
+
"no_op": false,
|
970 |
+
"num_sink_tokens": null,
|
971 |
+
"replace_with_linear": false,
|
972 |
+
"sparsify": null,
|
973 |
+
"unshifted_sink": false,
|
974 |
+
"use_prefill_window_in_sink_attention": false,
|
975 |
+
"window_length": null
|
976 |
+
},
|
977 |
+
"ffn": {
|
978 |
+
"ffn_mult": 4.875,
|
979 |
+
"no_op": false,
|
980 |
+
"replace_with_linear": false,
|
981 |
+
"sparsify": null
|
982 |
+
}
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"attention": {
|
986 |
+
"n_heads_in_group": null,
|
987 |
+
"no_op": true,
|
988 |
+
"num_sink_tokens": null,
|
989 |
+
"replace_with_linear": false,
|
990 |
+
"sparsify": null,
|
991 |
+
"unshifted_sink": false,
|
992 |
+
"use_prefill_window_in_sink_attention": false,
|
993 |
+
"window_length": null
|
994 |
+
},
|
995 |
+
"ffn": {
|
996 |
+
"ffn_mult": null,
|
997 |
+
"no_op": true,
|
998 |
+
"replace_with_linear": false,
|
999 |
+
"sparsify": null
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"attention": {
|
1004 |
+
"n_heads_in_group": null,
|
1005 |
+
"no_op": true,
|
1006 |
+
"num_sink_tokens": null,
|
1007 |
+
"replace_with_linear": false,
|
1008 |
+
"sparsify": null,
|
1009 |
+
"unshifted_sink": false,
|
1010 |
+
"use_prefill_window_in_sink_attention": false,
|
1011 |
+
"window_length": null
|
1012 |
+
},
|
1013 |
+
"ffn": {
|
1014 |
+
"ffn_mult": null,
|
1015 |
+
"no_op": true,
|
1016 |
+
"replace_with_linear": false,
|
1017 |
+
"sparsify": null
|
1018 |
+
}
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"attention": {
|
1022 |
+
"n_heads_in_group": null,
|
1023 |
+
"no_op": true,
|
1024 |
+
"num_sink_tokens": null,
|
1025 |
+
"replace_with_linear": false,
|
1026 |
+
"sparsify": null,
|
1027 |
+
"unshifted_sink": false,
|
1028 |
+
"use_prefill_window_in_sink_attention": false,
|
1029 |
+
"window_length": null
|
1030 |
+
},
|
1031 |
+
"ffn": {
|
1032 |
+
"ffn_mult": null,
|
1033 |
+
"no_op": true,
|
1034 |
+
"replace_with_linear": false,
|
1035 |
+
"sparsify": null
|
1036 |
+
}
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"attention": {
|
1040 |
+
"n_heads_in_group": null,
|
1041 |
+
"no_op": true,
|
1042 |
+
"num_sink_tokens": null,
|
1043 |
+
"replace_with_linear": false,
|
1044 |
+
"sparsify": null,
|
1045 |
+
"unshifted_sink": false,
|
1046 |
+
"use_prefill_window_in_sink_attention": false,
|
1047 |
+
"window_length": null
|
1048 |
+
},
|
1049 |
+
"ffn": {
|
1050 |
+
"ffn_mult": null,
|
1051 |
+
"no_op": true,
|
1052 |
+
"replace_with_linear": false,
|
1053 |
+
"sparsify": null
|
1054 |
+
}
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"attention": {
|
1058 |
+
"n_heads_in_group": null,
|
1059 |
+
"no_op": true,
|
1060 |
+
"num_sink_tokens": null,
|
1061 |
+
"replace_with_linear": false,
|
1062 |
+
"sparsify": null,
|
1063 |
+
"unshifted_sink": false,
|
1064 |
+
"use_prefill_window_in_sink_attention": false,
|
1065 |
+
"window_length": null
|
1066 |
+
},
|
1067 |
+
"ffn": {
|
1068 |
+
"ffn_mult": null,
|
1069 |
+
"no_op": true,
|
1070 |
+
"replace_with_linear": false,
|
1071 |
+
"sparsify": null
|
1072 |
+
}
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"attention": {
|
1076 |
+
"n_heads_in_group": 16,
|
1077 |
+
"no_op": false,
|
1078 |
+
"num_sink_tokens": null,
|
1079 |
+
"replace_with_linear": false,
|
1080 |
+
"sparsify": null,
|
1081 |
+
"unshifted_sink": false,
|
1082 |
+
"use_prefill_window_in_sink_attention": false,
|
1083 |
+
"window_length": null
|
1084 |
+
},
|
1085 |
+
"ffn": {
|
1086 |
+
"ffn_mult": 4.875,
|
1087 |
+
"no_op": false,
|
1088 |
+
"replace_with_linear": false,
|
1089 |
+
"sparsify": null
|
1090 |
+
}
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"attention": {
|
1094 |
+
"n_heads_in_group": 16,
|
1095 |
+
"no_op": false,
|
1096 |
+
"num_sink_tokens": null,
|
1097 |
+
"replace_with_linear": false,
|
1098 |
+
"sparsify": null,
|
1099 |
+
"unshifted_sink": false,
|
1100 |
+
"use_prefill_window_in_sink_attention": false,
|
1101 |
+
"window_length": null
|
1102 |
+
},
|
1103 |
+
"ffn": {
|
1104 |
+
"ffn_mult": 4.875,
|
1105 |
+
"no_op": false,
|
1106 |
+
"replace_with_linear": false,
|
1107 |
+
"sparsify": null
|
1108 |
+
}
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"attention": {
|
1112 |
+
"n_heads_in_group": 16,
|
1113 |
+
"no_op": false,
|
1114 |
+
"num_sink_tokens": null,
|
1115 |
+
"replace_with_linear": false,
|
1116 |
+
"sparsify": null,
|
1117 |
+
"unshifted_sink": false,
|
1118 |
+
"use_prefill_window_in_sink_attention": false,
|
1119 |
+
"window_length": null
|
1120 |
+
},
|
1121 |
+
"ffn": {
|
1122 |
+
"ffn_mult": 4.875,
|
1123 |
+
"no_op": false,
|
1124 |
+
"replace_with_linear": false,
|
1125 |
+
"sparsify": null
|
1126 |
+
}
|
1127 |
+
},
|
1128 |
+
{
|
1129 |
+
"attention": {
|
1130 |
+
"n_heads_in_group": 16,
|
1131 |
+
"no_op": false,
|
1132 |
+
"num_sink_tokens": null,
|
1133 |
+
"replace_with_linear": false,
|
1134 |
+
"sparsify": null,
|
1135 |
+
"unshifted_sink": false,
|
1136 |
+
"use_prefill_window_in_sink_attention": false,
|
1137 |
+
"window_length": null
|
1138 |
+
},
|
1139 |
+
"ffn": {
|
1140 |
+
"ffn_mult": 4.875,
|
1141 |
+
"no_op": false,
|
1142 |
+
"replace_with_linear": false,
|
1143 |
+
"sparsify": null
|
1144 |
+
}
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"attention": {
|
1148 |
+
"n_heads_in_group": null,
|
1149 |
+
"no_op": true,
|
1150 |
+
"num_sink_tokens": null,
|
1151 |
+
"replace_with_linear": false,
|
1152 |
+
"sparsify": null,
|
1153 |
+
"unshifted_sink": false,
|
1154 |
+
"use_prefill_window_in_sink_attention": false,
|
1155 |
+
"window_length": null
|
1156 |
+
},
|
1157 |
+
"ffn": {
|
1158 |
+
"ffn_mult": null,
|
1159 |
+
"no_op": true,
|
1160 |
+
"replace_with_linear": false,
|
1161 |
+
"sparsify": null
|
1162 |
+
}
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"attention": {
|
1166 |
+
"n_heads_in_group": null,
|
1167 |
+
"no_op": true,
|
1168 |
+
"num_sink_tokens": null,
|
1169 |
+
"replace_with_linear": false,
|
1170 |
+
"sparsify": null,
|
1171 |
+
"unshifted_sink": false,
|
1172 |
+
"use_prefill_window_in_sink_attention": false,
|
1173 |
+
"window_length": null
|
1174 |
+
},
|
1175 |
+
"ffn": {
|
1176 |
+
"ffn_mult": null,
|
1177 |
+
"no_op": true,
|
1178 |
+
"replace_with_linear": false,
|
1179 |
+
"sparsify": null
|
1180 |
+
}
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"attention": {
|
1184 |
+
"n_heads_in_group": null,
|
1185 |
+
"no_op": true,
|
1186 |
+
"num_sink_tokens": null,
|
1187 |
+
"replace_with_linear": false,
|
1188 |
+
"sparsify": null,
|
1189 |
+
"unshifted_sink": false,
|
1190 |
+
"use_prefill_window_in_sink_attention": false,
|
1191 |
+
"window_length": null
|
1192 |
+
},
|
1193 |
+
"ffn": {
|
1194 |
+
"ffn_mult": null,
|
1195 |
+
"no_op": true,
|
1196 |
+
"replace_with_linear": false,
|
1197 |
+
"sparsify": null
|
1198 |
+
}
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"attention": {
|
1202 |
+
"n_heads_in_group": null,
|
1203 |
+
"no_op": true,
|
1204 |
+
"num_sink_tokens": null,
|
1205 |
+
"replace_with_linear": false,
|
1206 |
+
"sparsify": null,
|
1207 |
+
"unshifted_sink": false,
|
1208 |
+
"use_prefill_window_in_sink_attention": false,
|
1209 |
+
"window_length": null
|
1210 |
+
},
|
1211 |
+
"ffn": {
|
1212 |
+
"ffn_mult": null,
|
1213 |
+
"no_op": true,
|
1214 |
+
"replace_with_linear": false,
|
1215 |
+
"sparsify": null
|
1216 |
+
}
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"attention": {
|
1220 |
+
"n_heads_in_group": null,
|
1221 |
+
"no_op": true,
|
1222 |
+
"num_sink_tokens": null,
|
1223 |
+
"replace_with_linear": false,
|
1224 |
+
"sparsify": null,
|
1225 |
+
"unshifted_sink": false,
|
1226 |
+
"use_prefill_window_in_sink_attention": false,
|
1227 |
+
"window_length": null
|
1228 |
+
},
|
1229 |
+
"ffn": {
|
1230 |
+
"ffn_mult": null,
|
1231 |
+
"no_op": true,
|
1232 |
+
"replace_with_linear": false,
|
1233 |
+
"sparsify": null
|
1234 |
+
}
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"attention": {
|
1238 |
+
"n_heads_in_group": 16,
|
1239 |
+
"no_op": false,
|
1240 |
+
"num_sink_tokens": null,
|
1241 |
+
"replace_with_linear": false,
|
1242 |
+
"sparsify": null,
|
1243 |
+
"unshifted_sink": false,
|
1244 |
+
"use_prefill_window_in_sink_attention": false,
|
1245 |
+
"window_length": null
|
1246 |
+
},
|
1247 |
+
"ffn": {
|
1248 |
+
"ffn_mult": 4.875,
|
1249 |
+
"no_op": false,
|
1250 |
+
"replace_with_linear": false,
|
1251 |
+
"sparsify": null
|
1252 |
+
}
|
1253 |
+
},
|
1254 |
+
{
|
1255 |
+
"attention": {
|
1256 |
+
"n_heads_in_group": 16,
|
1257 |
+
"no_op": false,
|
1258 |
+
"num_sink_tokens": null,
|
1259 |
+
"replace_with_linear": false,
|
1260 |
+
"sparsify": null,
|
1261 |
+
"unshifted_sink": false,
|
1262 |
+
"use_prefill_window_in_sink_attention": false,
|
1263 |
+
"window_length": null
|
1264 |
+
},
|
1265 |
+
"ffn": {
|
1266 |
+
"ffn_mult": 4.875,
|
1267 |
+
"no_op": false,
|
1268 |
+
"replace_with_linear": false,
|
1269 |
+
"sparsify": null
|
1270 |
+
}
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"attention": {
|
1274 |
+
"n_heads_in_group": 16,
|
1275 |
+
"no_op": false,
|
1276 |
+
"num_sink_tokens": null,
|
1277 |
+
"replace_with_linear": false,
|
1278 |
+
"sparsify": null,
|
1279 |
+
"unshifted_sink": false,
|
1280 |
+
"use_prefill_window_in_sink_attention": false,
|
1281 |
+
"window_length": null
|
1282 |
+
},
|
1283 |
+
"ffn": {
|
1284 |
+
"ffn_mult": 4.875,
|
1285 |
+
"no_op": false,
|
1286 |
+
"replace_with_linear": false,
|
1287 |
+
"sparsify": null
|
1288 |
+
}
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"attention": {
|
1292 |
+
"n_heads_in_group": 16,
|
1293 |
+
"no_op": false,
|
1294 |
+
"num_sink_tokens": null,
|
1295 |
+
"replace_with_linear": false,
|
1296 |
+
"sparsify": null,
|
1297 |
+
"unshifted_sink": false,
|
1298 |
+
"use_prefill_window_in_sink_attention": false,
|
1299 |
+
"window_length": null
|
1300 |
+
},
|
1301 |
+
"ffn": {
|
1302 |
+
"ffn_mult": 4.875,
|
1303 |
+
"no_op": false,
|
1304 |
+
"replace_with_linear": false,
|
1305 |
+
"sparsify": null
|
1306 |
+
}
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"attention": {
|
1310 |
+
"n_heads_in_group": null,
|
1311 |
+
"no_op": true,
|
1312 |
+
"num_sink_tokens": null,
|
1313 |
+
"replace_with_linear": false,
|
1314 |
+
"sparsify": null,
|
1315 |
+
"unshifted_sink": false,
|
1316 |
+
"use_prefill_window_in_sink_attention": false,
|
1317 |
+
"window_length": null
|
1318 |
+
},
|
1319 |
+
"ffn": {
|
1320 |
+
"ffn_mult": null,
|
1321 |
+
"no_op": true,
|
1322 |
+
"replace_with_linear": false,
|
1323 |
+
"sparsify": null
|
1324 |
+
}
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"attention": {
|
1328 |
+
"n_heads_in_group": null,
|
1329 |
+
"no_op": true,
|
1330 |
+
"num_sink_tokens": null,
|
1331 |
+
"replace_with_linear": false,
|
1332 |
+
"sparsify": null,
|
1333 |
+
"unshifted_sink": false,
|
1334 |
+
"use_prefill_window_in_sink_attention": false,
|
1335 |
+
"window_length": null
|
1336 |
+
},
|
1337 |
+
"ffn": {
|
1338 |
+
"ffn_mult": null,
|
1339 |
+
"no_op": true,
|
1340 |
+
"replace_with_linear": false,
|
1341 |
+
"sparsify": null
|
1342 |
+
}
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"attention": {
|
1346 |
+
"n_heads_in_group": null,
|
1347 |
+
"no_op": true,
|
1348 |
+
"num_sink_tokens": null,
|
1349 |
+
"replace_with_linear": false,
|
1350 |
+
"sparsify": null,
|
1351 |
+
"unshifted_sink": false,
|
1352 |
+
"use_prefill_window_in_sink_attention": false,
|
1353 |
+
"window_length": null
|
1354 |
+
},
|
1355 |
+
"ffn": {
|
1356 |
+
"ffn_mult": null,
|
1357 |
+
"no_op": true,
|
1358 |
+
"replace_with_linear": false,
|
1359 |
+
"sparsify": null
|
1360 |
+
}
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"attention": {
|
1364 |
+
"n_heads_in_group": null,
|
1365 |
+
"no_op": true,
|
1366 |
+
"num_sink_tokens": null,
|
1367 |
+
"replace_with_linear": false,
|
1368 |
+
"sparsify": null,
|
1369 |
+
"unshifted_sink": false,
|
1370 |
+
"use_prefill_window_in_sink_attention": false,
|
1371 |
+
"window_length": null
|
1372 |
+
},
|
1373 |
+
"ffn": {
|
1374 |
+
"ffn_mult": null,
|
1375 |
+
"no_op": true,
|
1376 |
+
"replace_with_linear": false,
|
1377 |
+
"sparsify": null
|
1378 |
+
}
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"attention": {
|
1382 |
+
"n_heads_in_group": null,
|
1383 |
+
"no_op": true,
|
1384 |
+
"num_sink_tokens": null,
|
1385 |
+
"replace_with_linear": false,
|
1386 |
+
"sparsify": null,
|
1387 |
+
"unshifted_sink": false,
|
1388 |
+
"use_prefill_window_in_sink_attention": false,
|
1389 |
+
"window_length": null
|
1390 |
+
},
|
1391 |
+
"ffn": {
|
1392 |
+
"ffn_mult": null,
|
1393 |
+
"no_op": true,
|
1394 |
+
"replace_with_linear": false,
|
1395 |
+
"sparsify": null
|
1396 |
+
}
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"attention": {
|
1400 |
+
"n_heads_in_group": 16,
|
1401 |
+
"no_op": false,
|
1402 |
+
"num_sink_tokens": null,
|
1403 |
+
"replace_with_linear": false,
|
1404 |
+
"sparsify": null,
|
1405 |
+
"unshifted_sink": false,
|
1406 |
+
"use_prefill_window_in_sink_attention": false,
|
1407 |
+
"window_length": null
|
1408 |
+
},
|
1409 |
+
"ffn": {
|
1410 |
+
"ffn_mult": 4.875,
|
1411 |
+
"no_op": false,
|
1412 |
+
"replace_with_linear": false,
|
1413 |
+
"sparsify": null
|
1414 |
+
}
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"attention": {
|
1418 |
+
"n_heads_in_group": 16,
|
1419 |
+
"no_op": false,
|
1420 |
+
"num_sink_tokens": null,
|
1421 |
+
"replace_with_linear": false,
|
1422 |
+
"sparsify": null,
|
1423 |
+
"unshifted_sink": false,
|
1424 |
+
"use_prefill_window_in_sink_attention": false,
|
1425 |
+
"window_length": null
|
1426 |
+
},
|
1427 |
+
"ffn": {
|
1428 |
+
"ffn_mult": 4.875,
|
1429 |
+
"no_op": false,
|
1430 |
+
"replace_with_linear": false,
|
1431 |
+
"sparsify": null
|
1432 |
+
}
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"attention": {
|
1436 |
+
"n_heads_in_group": 16,
|
1437 |
+
"no_op": false,
|
1438 |
+
"num_sink_tokens": null,
|
1439 |
+
"replace_with_linear": false,
|
1440 |
+
"sparsify": null,
|
1441 |
+
"unshifted_sink": false,
|
1442 |
+
"use_prefill_window_in_sink_attention": false,
|
1443 |
+
"window_length": null
|
1444 |
+
},
|
1445 |
+
"ffn": {
|
1446 |
+
"ffn_mult": 4.875,
|
1447 |
+
"no_op": false,
|
1448 |
+
"replace_with_linear": false,
|
1449 |
+
"sparsify": null
|
1450 |
+
}
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"attention": {
|
1454 |
+
"n_heads_in_group": 16,
|
1455 |
+
"no_op": false,
|
1456 |
+
"num_sink_tokens": null,
|
1457 |
+
"replace_with_linear": false,
|
1458 |
+
"sparsify": null,
|
1459 |
+
"unshifted_sink": false,
|
1460 |
+
"use_prefill_window_in_sink_attention": false,
|
1461 |
+
"window_length": null
|
1462 |
+
},
|
1463 |
+
"ffn": {
|
1464 |
+
"ffn_mult": 4.875,
|
1465 |
+
"no_op": false,
|
1466 |
+
"replace_with_linear": false,
|
1467 |
+
"sparsify": null
|
1468 |
+
}
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"attention": {
|
1472 |
+
"n_heads_in_group": null,
|
1473 |
+
"no_op": true,
|
1474 |
+
"num_sink_tokens": null,
|
1475 |
+
"replace_with_linear": false,
|
1476 |
+
"sparsify": null,
|
1477 |
+
"unshifted_sink": false,
|
1478 |
+
"use_prefill_window_in_sink_attention": false,
|
1479 |
+
"window_length": null
|
1480 |
+
},
|
1481 |
+
"ffn": {
|
1482 |
+
"ffn_mult": null,
|
1483 |
+
"no_op": true,
|
1484 |
+
"replace_with_linear": false,
|
1485 |
+
"sparsify": null
|
1486 |
+
}
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"attention": {
|
1490 |
+
"n_heads_in_group": null,
|
1491 |
+
"no_op": true,
|
1492 |
+
"num_sink_tokens": null,
|
1493 |
+
"replace_with_linear": false,
|
1494 |
+
"sparsify": null,
|
1495 |
+
"unshifted_sink": false,
|
1496 |
+
"use_prefill_window_in_sink_attention": false,
|
1497 |
+
"window_length": null
|
1498 |
+
},
|
1499 |
+
"ffn": {
|
1500 |
+
"ffn_mult": null,
|
1501 |
+
"no_op": true,
|
1502 |
+
"replace_with_linear": false,
|
1503 |
+
"sparsify": null
|
1504 |
+
}
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"attention": {
|
1508 |
+
"n_heads_in_group": null,
|
1509 |
+
"no_op": true,
|
1510 |
+
"num_sink_tokens": null,
|
1511 |
+
"replace_with_linear": false,
|
1512 |
+
"sparsify": null,
|
1513 |
+
"unshifted_sink": false,
|
1514 |
+
"use_prefill_window_in_sink_attention": false,
|
1515 |
+
"window_length": null
|
1516 |
+
},
|
1517 |
+
"ffn": {
|
1518 |
+
"ffn_mult": null,
|
1519 |
+
"no_op": true,
|
1520 |
+
"replace_with_linear": false,
|
1521 |
+
"sparsify": null
|
1522 |
+
}
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"attention": {
|
1526 |
+
"n_heads_in_group": null,
|
1527 |
+
"no_op": true,
|
1528 |
+
"num_sink_tokens": null,
|
1529 |
+
"replace_with_linear": false,
|
1530 |
+
"sparsify": null,
|
1531 |
+
"unshifted_sink": false,
|
1532 |
+
"use_prefill_window_in_sink_attention": false,
|
1533 |
+
"window_length": null
|
1534 |
+
},
|
1535 |
+
"ffn": {
|
1536 |
+
"ffn_mult": null,
|
1537 |
+
"no_op": true,
|
1538 |
+
"replace_with_linear": false,
|
1539 |
+
"sparsify": null
|
1540 |
+
}
|
1541 |
+
},
|
1542 |
+
{
|
1543 |
+
"attention": {
|
1544 |
+
"n_heads_in_group": null,
|
1545 |
+
"no_op": true,
|
1546 |
+
"num_sink_tokens": null,
|
1547 |
+
"replace_with_linear": false,
|
1548 |
+
"sparsify": null,
|
1549 |
+
"unshifted_sink": false,
|
1550 |
+
"use_prefill_window_in_sink_attention": false,
|
1551 |
+
"window_length": null
|
1552 |
+
},
|
1553 |
+
"ffn": {
|
1554 |
+
"ffn_mult": null,
|
1555 |
+
"no_op": true,
|
1556 |
+
"replace_with_linear": false,
|
1557 |
+
"sparsify": null
|
1558 |
+
}
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"attention": {
|
1562 |
+
"n_heads_in_group": 16,
|
1563 |
+
"no_op": false,
|
1564 |
+
"num_sink_tokens": null,
|
1565 |
+
"replace_with_linear": false,
|
1566 |
+
"sparsify": null,
|
1567 |
+
"unshifted_sink": false,
|
1568 |
+
"use_prefill_window_in_sink_attention": false,
|
1569 |
+
"window_length": null
|
1570 |
+
},
|
1571 |
+
"ffn": {
|
1572 |
+
"ffn_mult": 4.875,
|
1573 |
+
"no_op": false,
|
1574 |
+
"replace_with_linear": false,
|
1575 |
+
"sparsify": null
|
1576 |
+
}
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"attention": {
|
1580 |
+
"n_heads_in_group": 16,
|
1581 |
+
"no_op": false,
|
1582 |
+
"num_sink_tokens": null,
|
1583 |
+
"replace_with_linear": false,
|
1584 |
+
"sparsify": null,
|
1585 |
+
"unshifted_sink": false,
|
1586 |
+
"use_prefill_window_in_sink_attention": false,
|
1587 |
+
"window_length": null
|
1588 |
+
},
|
1589 |
+
"ffn": {
|
1590 |
+
"ffn_mult": 3.4125,
|
1591 |
+
"no_op": false,
|
1592 |
+
"replace_with_linear": false,
|
1593 |
+
"sparsify": null
|
1594 |
+
}
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"attention": {
|
1598 |
+
"n_heads_in_group": 16,
|
1599 |
+
"no_op": false,
|
1600 |
+
"num_sink_tokens": null,
|
1601 |
+
"replace_with_linear": false,
|
1602 |
+
"sparsify": null,
|
1603 |
+
"unshifted_sink": false,
|
1604 |
+
"use_prefill_window_in_sink_attention": false,
|
1605 |
+
"window_length": null
|
1606 |
+
},
|
1607 |
+
"ffn": {
|
1608 |
+
"ffn_mult": 3.4125,
|
1609 |
+
"no_op": false,
|
1610 |
+
"replace_with_linear": false,
|
1611 |
+
"sparsify": null
|
1612 |
+
}
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"attention": {
|
1616 |
+
"n_heads_in_group": 16,
|
1617 |
+
"no_op": false,
|
1618 |
+
"num_sink_tokens": null,
|
1619 |
+
"replace_with_linear": false,
|
1620 |
+
"sparsify": null,
|
1621 |
+
"unshifted_sink": false,
|
1622 |
+
"use_prefill_window_in_sink_attention": false,
|
1623 |
+
"window_length": null
|
1624 |
+
},
|
1625 |
+
"ffn": {
|
1626 |
+
"ffn_mult": 3.4125,
|
1627 |
+
"no_op": false,
|
1628 |
+
"replace_with_linear": false,
|
1629 |
+
"sparsify": null
|
1630 |
+
}
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"attention": {
|
1634 |
+
"n_heads_in_group": null,
|
1635 |
+
"no_op": true,
|
1636 |
+
"num_sink_tokens": null,
|
1637 |
+
"replace_with_linear": false,
|
1638 |
+
"sparsify": null,
|
1639 |
+
"unshifted_sink": false,
|
1640 |
+
"use_prefill_window_in_sink_attention": false,
|
1641 |
+
"window_length": null
|
1642 |
+
},
|
1643 |
+
"ffn": {
|
1644 |
+
"ffn_mult": null,
|
1645 |
+
"no_op": true,
|
1646 |
+
"replace_with_linear": false,
|
1647 |
+
"sparsify": null
|
1648 |
+
}
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"attention": {
|
1652 |
+
"n_heads_in_group": null,
|
1653 |
+
"no_op": true,
|
1654 |
+
"num_sink_tokens": null,
|
1655 |
+
"replace_with_linear": false,
|
1656 |
+
"sparsify": null,
|
1657 |
+
"unshifted_sink": false,
|
1658 |
+
"use_prefill_window_in_sink_attention": false,
|
1659 |
+
"window_length": null
|
1660 |
+
},
|
1661 |
+
"ffn": {
|
1662 |
+
"ffn_mult": null,
|
1663 |
+
"no_op": true,
|
1664 |
+
"replace_with_linear": false,
|
1665 |
+
"sparsify": null
|
1666 |
+
}
|
1667 |
+
},
|
1668 |
+
{
|
1669 |
+
"attention": {
|
1670 |
+
"n_heads_in_group": 16,
|
1671 |
+
"no_op": false,
|
1672 |
+
"num_sink_tokens": null,
|
1673 |
+
"replace_with_linear": false,
|
1674 |
+
"sparsify": null,
|
1675 |
+
"unshifted_sink": false,
|
1676 |
+
"use_prefill_window_in_sink_attention": false,
|
1677 |
+
"window_length": null
|
1678 |
+
},
|
1679 |
+
"ffn": {
|
1680 |
+
"ffn_mult": 2.925,
|
1681 |
+
"no_op": false,
|
1682 |
+
"replace_with_linear": false,
|
1683 |
+
"sparsify": null
|
1684 |
+
}
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"attention": {
|
1688 |
+
"n_heads_in_group": 16,
|
1689 |
+
"no_op": false,
|
1690 |
+
"num_sink_tokens": null,
|
1691 |
+
"replace_with_linear": false,
|
1692 |
+
"sparsify": null,
|
1693 |
+
"unshifted_sink": false,
|
1694 |
+
"use_prefill_window_in_sink_attention": false,
|
1695 |
+
"window_length": null
|
1696 |
+
},
|
1697 |
+
"ffn": {
|
1698 |
+
"ffn_mult": 2.4375,
|
1699 |
+
"no_op": false,
|
1700 |
+
"replace_with_linear": false,
|
1701 |
+
"sparsify": null
|
1702 |
+
}
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"attention": {
|
1706 |
+
"n_heads_in_group": 16,
|
1707 |
+
"no_op": false,
|
1708 |
+
"num_sink_tokens": null,
|
1709 |
+
"replace_with_linear": false,
|
1710 |
+
"sparsify": null,
|
1711 |
+
"unshifted_sink": false,
|
1712 |
+
"use_prefill_window_in_sink_attention": false,
|
1713 |
+
"window_length": null
|
1714 |
+
},
|
1715 |
+
"ffn": {
|
1716 |
+
"ffn_mult": 2.4375,
|
1717 |
+
"no_op": false,
|
1718 |
+
"replace_with_linear": false,
|
1719 |
+
"sparsify": null
|
1720 |
+
}
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"attention": {
|
1724 |
+
"n_heads_in_group": 16,
|
1725 |
+
"no_op": false,
|
1726 |
+
"num_sink_tokens": null,
|
1727 |
+
"replace_with_linear": false,
|
1728 |
+
"sparsify": null,
|
1729 |
+
"unshifted_sink": false,
|
1730 |
+
"use_prefill_window_in_sink_attention": false,
|
1731 |
+
"window_length": null
|
1732 |
+
},
|
1733 |
+
"ffn": {
|
1734 |
+
"ffn_mult": 2.4375,
|
1735 |
+
"no_op": false,
|
1736 |
+
"replace_with_linear": false,
|
1737 |
+
"sparsify": null
|
1738 |
+
}
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"attention": {
|
1742 |
+
"n_heads_in_group": null,
|
1743 |
+
"no_op": true,
|
1744 |
+
"num_sink_tokens": null,
|
1745 |
+
"replace_with_linear": false,
|
1746 |
+
"sparsify": null,
|
1747 |
+
"unshifted_sink": false,
|
1748 |
+
"use_prefill_window_in_sink_attention": false,
|
1749 |
+
"window_length": null
|
1750 |
+
},
|
1751 |
+
"ffn": {
|
1752 |
+
"ffn_mult": 2.4375,
|
1753 |
+
"no_op": false,
|
1754 |
+
"replace_with_linear": false,
|
1755 |
+
"sparsify": null
|
1756 |
+
}
|
1757 |
+
},
|
1758 |
+
{
|
1759 |
+
"attention": {
|
1760 |
+
"n_heads_in_group": null,
|
1761 |
+
"no_op": true,
|
1762 |
+
"num_sink_tokens": null,
|
1763 |
+
"replace_with_linear": false,
|
1764 |
+
"sparsify": null,
|
1765 |
+
"unshifted_sink": false,
|
1766 |
+
"use_prefill_window_in_sink_attention": false,
|
1767 |
+
"window_length": null
|
1768 |
+
},
|
1769 |
+
"ffn": {
|
1770 |
+
"ffn_mult": 2.4375,
|
1771 |
+
"no_op": false,
|
1772 |
+
"replace_with_linear": false,
|
1773 |
+
"sparsify": null
|
1774 |
+
}
|
1775 |
+
},
|
1776 |
+
{
|
1777 |
+
"attention": {
|
1778 |
+
"n_heads_in_group": 16,
|
1779 |
+
"no_op": false,
|
1780 |
+
"num_sink_tokens": null,
|
1781 |
+
"replace_with_linear": false,
|
1782 |
+
"sparsify": null,
|
1783 |
+
"unshifted_sink": false,
|
1784 |
+
"use_prefill_window_in_sink_attention": false,
|
1785 |
+
"window_length": null
|
1786 |
+
},
|
1787 |
+
"ffn": {
|
1788 |
+
"ffn_mult": 2.4375,
|
1789 |
+
"no_op": false,
|
1790 |
+
"replace_with_linear": false,
|
1791 |
+
"sparsify": null
|
1792 |
+
}
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"attention": {
|
1796 |
+
"n_heads_in_group": null,
|
1797 |
+
"no_op": true,
|
1798 |
+
"num_sink_tokens": null,
|
1799 |
+
"replace_with_linear": false,
|
1800 |
+
"sparsify": null,
|
1801 |
+
"unshifted_sink": false,
|
1802 |
+
"use_prefill_window_in_sink_attention": false,
|
1803 |
+
"window_length": null
|
1804 |
+
},
|
1805 |
+
"ffn": {
|
1806 |
+
"ffn_mult": null,
|
1807 |
+
"no_op": true,
|
1808 |
+
"replace_with_linear": false,
|
1809 |
+
"sparsify": null
|
1810 |
+
}
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"attention": {
|
1814 |
+
"n_heads_in_group": null,
|
1815 |
+
"no_op": true,
|
1816 |
+
"num_sink_tokens": null,
|
1817 |
+
"replace_with_linear": false,
|
1818 |
+
"sparsify": null,
|
1819 |
+
"unshifted_sink": false,
|
1820 |
+
"use_prefill_window_in_sink_attention": false,
|
1821 |
+
"window_length": null
|
1822 |
+
},
|
1823 |
+
"ffn": {
|
1824 |
+
"ffn_mult": 2.4375,
|
1825 |
+
"no_op": false,
|
1826 |
+
"replace_with_linear": false,
|
1827 |
+
"sparsify": null
|
1828 |
+
}
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"attention": {
|
1832 |
+
"n_heads_in_group": null,
|
1833 |
+
"no_op": true,
|
1834 |
+
"num_sink_tokens": null,
|
1835 |
+
"replace_with_linear": false,
|
1836 |
+
"sparsify": null,
|
1837 |
+
"unshifted_sink": false,
|
1838 |
+
"use_prefill_window_in_sink_attention": false,
|
1839 |
+
"window_length": null
|
1840 |
+
},
|
1841 |
+
"ffn": {
|
1842 |
+
"ffn_mult": 2.4375,
|
1843 |
+
"no_op": false,
|
1844 |
+
"replace_with_linear": false,
|
1845 |
+
"sparsify": null
|
1846 |
+
}
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"attention": {
|
1850 |
+
"n_heads_in_group": null,
|
1851 |
+
"no_op": true,
|
1852 |
+
"num_sink_tokens": null,
|
1853 |
+
"replace_with_linear": false,
|
1854 |
+
"sparsify": null,
|
1855 |
+
"unshifted_sink": false,
|
1856 |
+
"use_prefill_window_in_sink_attention": false,
|
1857 |
+
"window_length": null
|
1858 |
+
},
|
1859 |
+
"ffn": {
|
1860 |
+
"ffn_mult": 2.4375,
|
1861 |
+
"no_op": false,
|
1862 |
+
"replace_with_linear": false,
|
1863 |
+
"sparsify": null
|
1864 |
+
}
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"attention": {
|
1868 |
+
"n_heads_in_group": null,
|
1869 |
+
"no_op": true,
|
1870 |
+
"num_sink_tokens": null,
|
1871 |
+
"replace_with_linear": false,
|
1872 |
+
"sparsify": null,
|
1873 |
+
"unshifted_sink": false,
|
1874 |
+
"use_prefill_window_in_sink_attention": false,
|
1875 |
+
"window_length": null
|
1876 |
+
},
|
1877 |
+
"ffn": {
|
1878 |
+
"ffn_mult": 2.4375,
|
1879 |
+
"no_op": false,
|
1880 |
+
"replace_with_linear": false,
|
1881 |
+
"sparsify": null
|
1882 |
+
}
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"attention": {
|
1886 |
+
"n_heads_in_group": null,
|
1887 |
+
"no_op": true,
|
1888 |
+
"num_sink_tokens": null,
|
1889 |
+
"replace_with_linear": false,
|
1890 |
+
"sparsify": null,
|
1891 |
+
"unshifted_sink": false,
|
1892 |
+
"use_prefill_window_in_sink_attention": false,
|
1893 |
+
"window_length": null
|
1894 |
+
},
|
1895 |
+
"ffn": {
|
1896 |
+
"ffn_mult": 2.4375,
|
1897 |
+
"no_op": false,
|
1898 |
+
"replace_with_linear": false,
|
1899 |
+
"sparsify": null
|
1900 |
+
}
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"attention": {
|
1904 |
+
"n_heads_in_group": null,
|
1905 |
+
"no_op": true,
|
1906 |
+
"num_sink_tokens": null,
|
1907 |
+
"replace_with_linear": false,
|
1908 |
+
"sparsify": null,
|
1909 |
+
"unshifted_sink": false,
|
1910 |
+
"use_prefill_window_in_sink_attention": false,
|
1911 |
+
"window_length": null
|
1912 |
+
},
|
1913 |
+
"ffn": {
|
1914 |
+
"ffn_mult": 2.4375,
|
1915 |
+
"no_op": false,
|
1916 |
+
"replace_with_linear": false,
|
1917 |
+
"sparsify": null
|
1918 |
+
}
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"attention": {
|
1922 |
+
"n_heads_in_group": null,
|
1923 |
+
"no_op": true,
|
1924 |
+
"num_sink_tokens": null,
|
1925 |
+
"replace_with_linear": false,
|
1926 |
+
"sparsify": null,
|
1927 |
+
"unshifted_sink": false,
|
1928 |
+
"use_prefill_window_in_sink_attention": false,
|
1929 |
+
"window_length": null
|
1930 |
+
},
|
1931 |
+
"ffn": {
|
1932 |
+
"ffn_mult": 2.4375,
|
1933 |
+
"no_op": false,
|
1934 |
+
"replace_with_linear": false,
|
1935 |
+
"sparsify": null
|
1936 |
+
}
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"attention": {
|
1940 |
+
"n_heads_in_group": 16,
|
1941 |
+
"no_op": false,
|
1942 |
+
"num_sink_tokens": null,
|
1943 |
+
"replace_with_linear": false,
|
1944 |
+
"sparsify": null,
|
1945 |
+
"unshifted_sink": false,
|
1946 |
+
"use_prefill_window_in_sink_attention": false,
|
1947 |
+
"window_length": null
|
1948 |
+
},
|
1949 |
+
"ffn": {
|
1950 |
+
"ffn_mult": 2.4375,
|
1951 |
+
"no_op": false,
|
1952 |
+
"replace_with_linear": false,
|
1953 |
+
"sparsify": null
|
1954 |
+
}
|
1955 |
+
},
|
1956 |
+
{
|
1957 |
+
"attention": {
|
1958 |
+
"n_heads_in_group": null,
|
1959 |
+
"no_op": true,
|
1960 |
+
"num_sink_tokens": null,
|
1961 |
+
"replace_with_linear": false,
|
1962 |
+
"sparsify": null,
|
1963 |
+
"unshifted_sink": false,
|
1964 |
+
"use_prefill_window_in_sink_attention": false,
|
1965 |
+
"window_length": null
|
1966 |
+
},
|
1967 |
+
"ffn": {
|
1968 |
+
"ffn_mult": null,
|
1969 |
+
"no_op": true,
|
1970 |
+
"replace_with_linear": false,
|
1971 |
+
"sparsify": null
|
1972 |
+
}
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"attention": {
|
1976 |
+
"n_heads_in_group": null,
|
1977 |
+
"no_op": true,
|
1978 |
+
"num_sink_tokens": null,
|
1979 |
+
"replace_with_linear": false,
|
1980 |
+
"sparsify": null,
|
1981 |
+
"unshifted_sink": false,
|
1982 |
+
"use_prefill_window_in_sink_attention": false,
|
1983 |
+
"window_length": null
|
1984 |
+
},
|
1985 |
+
"ffn": {
|
1986 |
+
"ffn_mult": null,
|
1987 |
+
"no_op": true,
|
1988 |
+
"replace_with_linear": false,
|
1989 |
+
"sparsify": null
|
1990 |
+
}
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"attention": {
|
1994 |
+
"n_heads_in_group": null,
|
1995 |
+
"no_op": true,
|
1996 |
+
"num_sink_tokens": null,
|
1997 |
+
"replace_with_linear": false,
|
1998 |
+
"sparsify": null,
|
1999 |
+
"unshifted_sink": false,
|
2000 |
+
"use_prefill_window_in_sink_attention": false,
|
2001 |
+
"window_length": null
|
2002 |
+
},
|
2003 |
+
"ffn": {
|
2004 |
+
"ffn_mult": null,
|
2005 |
+
"no_op": true,
|
2006 |
+
"replace_with_linear": false,
|
2007 |
+
"sparsify": null
|
2008 |
+
}
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"attention": {
|
2012 |
+
"n_heads_in_group": null,
|
2013 |
+
"no_op": true,
|
2014 |
+
"num_sink_tokens": null,
|
2015 |
+
"replace_with_linear": false,
|
2016 |
+
"sparsify": null,
|
2017 |
+
"unshifted_sink": false,
|
2018 |
+
"use_prefill_window_in_sink_attention": false,
|
2019 |
+
"window_length": null
|
2020 |
+
},
|
2021 |
+
"ffn": {
|
2022 |
+
"ffn_mult": null,
|
2023 |
+
"no_op": true,
|
2024 |
+
"replace_with_linear": false,
|
2025 |
+
"sparsify": null
|
2026 |
+
}
|
2027 |
+
},
|
2028 |
+
{
|
2029 |
+
"attention": {
|
2030 |
+
"n_heads_in_group": null,
|
2031 |
+
"no_op": true,
|
2032 |
+
"num_sink_tokens": null,
|
2033 |
+
"replace_with_linear": false,
|
2034 |
+
"sparsify": null,
|
2035 |
+
"unshifted_sink": false,
|
2036 |
+
"use_prefill_window_in_sink_attention": false,
|
2037 |
+
"window_length": null
|
2038 |
+
},
|
2039 |
+
"ffn": {
|
2040 |
+
"ffn_mult": null,
|
2041 |
+
"no_op": true,
|
2042 |
+
"replace_with_linear": false,
|
2043 |
+
"sparsify": null
|
2044 |
+
}
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"attention": {
|
2048 |
+
"n_heads_in_group": 16,
|
2049 |
+
"no_op": false,
|
2050 |
+
"num_sink_tokens": null,
|
2051 |
+
"replace_with_linear": false,
|
2052 |
+
"sparsify": null,
|
2053 |
+
"unshifted_sink": false,
|
2054 |
+
"use_prefill_window_in_sink_attention": false,
|
2055 |
+
"window_length": null
|
2056 |
+
},
|
2057 |
+
"ffn": {
|
2058 |
+
"ffn_mult": 2.925,
|
2059 |
+
"no_op": false,
|
2060 |
+
"replace_with_linear": false,
|
2061 |
+
"sparsify": null
|
2062 |
+
}
|
2063 |
+
},
|
2064 |
+
{
|
2065 |
+
"attention": {
|
2066 |
+
"n_heads_in_group": 16,
|
2067 |
+
"no_op": false,
|
2068 |
+
"num_sink_tokens": null,
|
2069 |
+
"replace_with_linear": false,
|
2070 |
+
"sparsify": null,
|
2071 |
+
"unshifted_sink": false,
|
2072 |
+
"use_prefill_window_in_sink_attention": false,
|
2073 |
+
"window_length": null
|
2074 |
+
},
|
2075 |
+
"ffn": {
|
2076 |
+
"ffn_mult": 4.875,
|
2077 |
+
"no_op": false,
|
2078 |
+
"replace_with_linear": false,
|
2079 |
+
"sparsify": null
|
2080 |
+
}
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"attention": {
|
2084 |
+
"n_heads_in_group": null,
|
2085 |
+
"no_op": true,
|
2086 |
+
"num_sink_tokens": null,
|
2087 |
+
"replace_with_linear": false,
|
2088 |
+
"sparsify": null,
|
2089 |
+
"unshifted_sink": false,
|
2090 |
+
"use_prefill_window_in_sink_attention": false,
|
2091 |
+
"window_length": null
|
2092 |
+
},
|
2093 |
+
"ffn": {
|
2094 |
+
"ffn_mult": 4.875,
|
2095 |
+
"no_op": false,
|
2096 |
+
"replace_with_linear": false,
|
2097 |
+
"sparsify": null
|
2098 |
+
}
|
2099 |
+
},
|
2100 |
+
{
|
2101 |
+
"attention": {
|
2102 |
+
"n_heads_in_group": 16,
|
2103 |
+
"no_op": false,
|
2104 |
+
"num_sink_tokens": null,
|
2105 |
+
"replace_with_linear": false,
|
2106 |
+
"sparsify": null,
|
2107 |
+
"unshifted_sink": false,
|
2108 |
+
"use_prefill_window_in_sink_attention": false,
|
2109 |
+
"window_length": null
|
2110 |
+
},
|
2111 |
+
"ffn": {
|
2112 |
+
"ffn_mult": 4.875,
|
2113 |
+
"no_op": false,
|
2114 |
+
"replace_with_linear": false,
|
2115 |
+
"sparsify": null
|
2116 |
+
}
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"attention": {
|
2120 |
+
"n_heads_in_group": null,
|
2121 |
+
"no_op": true,
|
2122 |
+
"num_sink_tokens": null,
|
2123 |
+
"replace_with_linear": false,
|
2124 |
+
"sparsify": null,
|
2125 |
+
"unshifted_sink": false,
|
2126 |
+
"use_prefill_window_in_sink_attention": false,
|
2127 |
+
"window_length": null
|
2128 |
+
},
|
2129 |
+
"ffn": {
|
2130 |
+
"ffn_mult": null,
|
2131 |
+
"no_op": true,
|
2132 |
+
"replace_with_linear": false,
|
2133 |
+
"sparsify": null
|
2134 |
+
}
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"attention": {
|
2138 |
+
"n_heads_in_group": null,
|
2139 |
+
"no_op": true,
|
2140 |
+
"num_sink_tokens": null,
|
2141 |
+
"replace_with_linear": false,
|
2142 |
+
"sparsify": null,
|
2143 |
+
"unshifted_sink": false,
|
2144 |
+
"use_prefill_window_in_sink_attention": false,
|
2145 |
+
"window_length": null
|
2146 |
+
},
|
2147 |
+
"ffn": {
|
2148 |
+
"ffn_mult": null,
|
2149 |
+
"no_op": true,
|
2150 |
+
"replace_with_linear": false,
|
2151 |
+
"sparsify": null
|
2152 |
+
}
|
2153 |
+
},
|
2154 |
+
{
|
2155 |
+
"attention": {
|
2156 |
+
"n_heads_in_group": null,
|
2157 |
+
"no_op": true,
|
2158 |
+
"num_sink_tokens": null,
|
2159 |
+
"replace_with_linear": false,
|
2160 |
+
"sparsify": null,
|
2161 |
+
"unshifted_sink": false,
|
2162 |
+
"use_prefill_window_in_sink_attention": false,
|
2163 |
+
"window_length": null
|
2164 |
+
},
|
2165 |
+
"ffn": {
|
2166 |
+
"ffn_mult": null,
|
2167 |
+
"no_op": true,
|
2168 |
+
"replace_with_linear": false,
|
2169 |
+
"sparsify": null
|
2170 |
+
}
|
2171 |
+
},
|
2172 |
+
{
|
2173 |
+
"attention": {
|
2174 |
+
"n_heads_in_group": null,
|
2175 |
+
"no_op": true,
|
2176 |
+
"num_sink_tokens": null,
|
2177 |
+
"replace_with_linear": false,
|
2178 |
+
"sparsify": null,
|
2179 |
+
"unshifted_sink": false,
|
2180 |
+
"use_prefill_window_in_sink_attention": false,
|
2181 |
+
"window_length": null
|
2182 |
+
},
|
2183 |
+
"ffn": {
|
2184 |
+
"ffn_mult": null,
|
2185 |
+
"no_op": true,
|
2186 |
+
"replace_with_linear": false,
|
2187 |
+
"sparsify": null
|
2188 |
+
}
|
2189 |
+
},
|
2190 |
+
{
|
2191 |
+
"attention": {
|
2192 |
+
"n_heads_in_group": null,
|
2193 |
+
"no_op": true,
|
2194 |
+
"num_sink_tokens": null,
|
2195 |
+
"replace_with_linear": false,
|
2196 |
+
"sparsify": null,
|
2197 |
+
"unshifted_sink": false,
|
2198 |
+
"use_prefill_window_in_sink_attention": false,
|
2199 |
+
"window_length": null
|
2200 |
+
},
|
2201 |
+
"ffn": {
|
2202 |
+
"ffn_mult": null,
|
2203 |
+
"no_op": true,
|
2204 |
+
"replace_with_linear": false,
|
2205 |
+
"sparsify": null
|
2206 |
+
}
|
2207 |
+
},
|
2208 |
+
{
|
2209 |
+
"attention": {
|
2210 |
+
"n_heads_in_group": null,
|
2211 |
+
"no_op": true,
|
2212 |
+
"num_sink_tokens": null,
|
2213 |
+
"replace_with_linear": false,
|
2214 |
+
"sparsify": null,
|
2215 |
+
"unshifted_sink": false,
|
2216 |
+
"use_prefill_window_in_sink_attention": false,
|
2217 |
+
"window_length": null
|
2218 |
+
},
|
2219 |
+
"ffn": {
|
2220 |
+
"ffn_mult": null,
|
2221 |
+
"no_op": true,
|
2222 |
+
"replace_with_linear": false,
|
2223 |
+
"sparsify": null
|
2224 |
+
}
|
2225 |
+
},
|
2226 |
+
{
|
2227 |
+
"attention": {
|
2228 |
+
"n_heads_in_group": null,
|
2229 |
+
"no_op": true,
|
2230 |
+
"num_sink_tokens": null,
|
2231 |
+
"replace_with_linear": false,
|
2232 |
+
"sparsify": null,
|
2233 |
+
"unshifted_sink": false,
|
2234 |
+
"use_prefill_window_in_sink_attention": false,
|
2235 |
+
"window_length": null
|
2236 |
+
},
|
2237 |
+
"ffn": {
|
2238 |
+
"ffn_mult": null,
|
2239 |
+
"no_op": true,
|
2240 |
+
"replace_with_linear": false,
|
2241 |
+
"sparsify": null
|
2242 |
+
}
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"attention": {
|
2246 |
+
"n_heads_in_group": null,
|
2247 |
+
"no_op": true,
|
2248 |
+
"num_sink_tokens": null,
|
2249 |
+
"replace_with_linear": false,
|
2250 |
+
"sparsify": null,
|
2251 |
+
"unshifted_sink": false,
|
2252 |
+
"use_prefill_window_in_sink_attention": false,
|
2253 |
+
"window_length": null
|
2254 |
+
},
|
2255 |
+
"ffn": {
|
2256 |
+
"ffn_mult": null,
|
2257 |
+
"no_op": true,
|
2258 |
+
"replace_with_linear": false,
|
2259 |
+
"sparsify": null
|
2260 |
+
}
|
2261 |
+
},
|
2262 |
+
{
|
2263 |
+
"attention": {
|
2264 |
+
"n_heads_in_group": null,
|
2265 |
+
"no_op": true,
|
2266 |
+
"num_sink_tokens": null,
|
2267 |
+
"replace_with_linear": false,
|
2268 |
+
"sparsify": null,
|
2269 |
+
"unshifted_sink": false,
|
2270 |
+
"use_prefill_window_in_sink_attention": false,
|
2271 |
+
"window_length": null
|
2272 |
+
},
|
2273 |
+
"ffn": {
|
2274 |
+
"ffn_mult": 36.5625,
|
2275 |
+
"no_op": false,
|
2276 |
+
"replace_with_linear": false,
|
2277 |
+
"sparsify": null
|
2278 |
+
}
|
2279 |
+
},
|
2280 |
+
{
|
2281 |
+
"attention": {
|
2282 |
+
"n_heads_in_group": null,
|
2283 |
+
"no_op": true,
|
2284 |
+
"num_sink_tokens": null,
|
2285 |
+
"replace_with_linear": false,
|
2286 |
+
"sparsify": null,
|
2287 |
+
"unshifted_sink": false,
|
2288 |
+
"use_prefill_window_in_sink_attention": false,
|
2289 |
+
"window_length": null
|
2290 |
+
},
|
2291 |
+
"ffn": {
|
2292 |
+
"ffn_mult": null,
|
2293 |
+
"no_op": true,
|
2294 |
+
"replace_with_linear": false,
|
2295 |
+
"sparsify": null
|
2296 |
+
}
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"attention": {
|
2300 |
+
"n_heads_in_group": null,
|
2301 |
+
"no_op": true,
|
2302 |
+
"num_sink_tokens": null,
|
2303 |
+
"replace_with_linear": false,
|
2304 |
+
"sparsify": null,
|
2305 |
+
"unshifted_sink": false,
|
2306 |
+
"use_prefill_window_in_sink_attention": false,
|
2307 |
+
"window_length": null
|
2308 |
+
},
|
2309 |
+
"ffn": {
|
2310 |
+
"ffn_mult": null,
|
2311 |
+
"no_op": true,
|
2312 |
+
"replace_with_linear": false,
|
2313 |
+
"sparsify": null
|
2314 |
+
}
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"attention": {
|
2318 |
+
"n_heads_in_group": null,
|
2319 |
+
"no_op": true,
|
2320 |
+
"num_sink_tokens": null,
|
2321 |
+
"replace_with_linear": false,
|
2322 |
+
"sparsify": null,
|
2323 |
+
"unshifted_sink": false,
|
2324 |
+
"use_prefill_window_in_sink_attention": false,
|
2325 |
+
"window_length": null
|
2326 |
+
},
|
2327 |
+
"ffn": {
|
2328 |
+
"ffn_mult": null,
|
2329 |
+
"no_op": true,
|
2330 |
+
"replace_with_linear": false,
|
2331 |
+
"sparsify": null
|
2332 |
+
}
|
2333 |
+
},
|
2334 |
+
{
|
2335 |
+
"attention": {
|
2336 |
+
"n_heads_in_group": null,
|
2337 |
+
"no_op": true,
|
2338 |
+
"num_sink_tokens": null,
|
2339 |
+
"replace_with_linear": false,
|
2340 |
+
"sparsify": null,
|
2341 |
+
"unshifted_sink": false,
|
2342 |
+
"use_prefill_window_in_sink_attention": false,
|
2343 |
+
"window_length": null
|
2344 |
+
},
|
2345 |
+
"ffn": {
|
2346 |
+
"ffn_mult": null,
|
2347 |
+
"no_op": true,
|
2348 |
+
"replace_with_linear": false,
|
2349 |
+
"sparsify": null
|
2350 |
+
}
|
2351 |
+
},
|
2352 |
+
{
|
2353 |
+
"attention": {
|
2354 |
+
"n_heads_in_group": null,
|
2355 |
+
"no_op": true,
|
2356 |
+
"num_sink_tokens": null,
|
2357 |
+
"replace_with_linear": false,
|
2358 |
+
"sparsify": null,
|
2359 |
+
"unshifted_sink": false,
|
2360 |
+
"use_prefill_window_in_sink_attention": false,
|
2361 |
+
"window_length": null
|
2362 |
+
},
|
2363 |
+
"ffn": {
|
2364 |
+
"ffn_mult": null,
|
2365 |
+
"no_op": true,
|
2366 |
+
"replace_with_linear": false,
|
2367 |
+
"sparsify": null
|
2368 |
+
}
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"attention": {
|
2372 |
+
"n_heads_in_group": null,
|
2373 |
+
"no_op": true,
|
2374 |
+
"num_sink_tokens": null,
|
2375 |
+
"replace_with_linear": false,
|
2376 |
+
"sparsify": null,
|
2377 |
+
"unshifted_sink": false,
|
2378 |
+
"use_prefill_window_in_sink_attention": false,
|
2379 |
+
"window_length": null
|
2380 |
+
},
|
2381 |
+
"ffn": {
|
2382 |
+
"ffn_mult": null,
|
2383 |
+
"no_op": true,
|
2384 |
+
"replace_with_linear": false,
|
2385 |
+
"sparsify": null
|
2386 |
+
}
|
2387 |
+
},
|
2388 |
+
{
|
2389 |
+
"attention": {
|
2390 |
+
"n_heads_in_group": null,
|
2391 |
+
"no_op": true,
|
2392 |
+
"num_sink_tokens": null,
|
2393 |
+
"replace_with_linear": false,
|
2394 |
+
"sparsify": null,
|
2395 |
+
"unshifted_sink": false,
|
2396 |
+
"use_prefill_window_in_sink_attention": false,
|
2397 |
+
"window_length": null
|
2398 |
+
},
|
2399 |
+
"ffn": {
|
2400 |
+
"ffn_mult": null,
|
2401 |
+
"no_op": true,
|
2402 |
+
"replace_with_linear": false,
|
2403 |
+
"sparsify": null
|
2404 |
+
}
|
2405 |
+
},
|
2406 |
+
{
|
2407 |
+
"attention": {
|
2408 |
+
"n_heads_in_group": null,
|
2409 |
+
"no_op": true,
|
2410 |
+
"num_sink_tokens": null,
|
2411 |
+
"replace_with_linear": false,
|
2412 |
+
"sparsify": null,
|
2413 |
+
"unshifted_sink": false,
|
2414 |
+
"use_prefill_window_in_sink_attention": false,
|
2415 |
+
"window_length": null
|
2416 |
+
},
|
2417 |
+
"ffn": {
|
2418 |
+
"ffn_mult": null,
|
2419 |
+
"no_op": true,
|
2420 |
+
"replace_with_linear": false,
|
2421 |
+
"sparsify": null
|
2422 |
+
}
|
2423 |
+
},
|
2424 |
+
{
|
2425 |
+
"attention": {
|
2426 |
+
"n_heads_in_group": null,
|
2427 |
+
"no_op": true,
|
2428 |
+
"num_sink_tokens": null,
|
2429 |
+
"replace_with_linear": false,
|
2430 |
+
"sparsify": null,
|
2431 |
+
"unshifted_sink": false,
|
2432 |
+
"use_prefill_window_in_sink_attention": false,
|
2433 |
+
"window_length": null
|
2434 |
+
},
|
2435 |
+
"ffn": {
|
2436 |
+
"ffn_mult": 39.0,
|
2437 |
+
"no_op": false,
|
2438 |
+
"replace_with_linear": false,
|
2439 |
+
"sparsify": null
|
2440 |
+
}
|
2441 |
+
},
|
2442 |
+
{
|
2443 |
+
"attention": {
|
2444 |
+
"n_heads_in_group": null,
|
2445 |
+
"no_op": true,
|
2446 |
+
"num_sink_tokens": null,
|
2447 |
+
"replace_with_linear": false,
|
2448 |
+
"sparsify": null,
|
2449 |
+
"unshifted_sink": false,
|
2450 |
+
"use_prefill_window_in_sink_attention": false,
|
2451 |
+
"window_length": null
|
2452 |
+
},
|
2453 |
+
"ffn": {
|
2454 |
+
"ffn_mult": null,
|
2455 |
+
"no_op": true,
|
2456 |
+
"replace_with_linear": false,
|
2457 |
+
"sparsify": null
|
2458 |
+
}
|
2459 |
+
},
|
2460 |
+
{
|
2461 |
+
"attention": {
|
2462 |
+
"n_heads_in_group": null,
|
2463 |
+
"no_op": true,
|
2464 |
+
"num_sink_tokens": null,
|
2465 |
+
"replace_with_linear": false,
|
2466 |
+
"sparsify": null,
|
2467 |
+
"unshifted_sink": false,
|
2468 |
+
"use_prefill_window_in_sink_attention": false,
|
2469 |
+
"window_length": null
|
2470 |
+
},
|
2471 |
+
"ffn": {
|
2472 |
+
"ffn_mult": null,
|
2473 |
+
"no_op": true,
|
2474 |
+
"replace_with_linear": false,
|
2475 |
+
"sparsify": null
|
2476 |
+
}
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"attention": {
|
2480 |
+
"n_heads_in_group": null,
|
2481 |
+
"no_op": true,
|
2482 |
+
"num_sink_tokens": null,
|
2483 |
+
"replace_with_linear": false,
|
2484 |
+
"sparsify": null,
|
2485 |
+
"unshifted_sink": false,
|
2486 |
+
"use_prefill_window_in_sink_attention": false,
|
2487 |
+
"window_length": null
|
2488 |
+
},
|
2489 |
+
"ffn": {
|
2490 |
+
"ffn_mult": null,
|
2491 |
+
"no_op": true,
|
2492 |
+
"replace_with_linear": false,
|
2493 |
+
"sparsify": null
|
2494 |
+
}
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"attention": {
|
2498 |
+
"n_heads_in_group": null,
|
2499 |
+
"no_op": true,
|
2500 |
+
"num_sink_tokens": null,
|
2501 |
+
"replace_with_linear": false,
|
2502 |
+
"sparsify": null,
|
2503 |
+
"unshifted_sink": false,
|
2504 |
+
"use_prefill_window_in_sink_attention": false,
|
2505 |
+
"window_length": null
|
2506 |
+
},
|
2507 |
+
"ffn": {
|
2508 |
+
"ffn_mult": null,
|
2509 |
+
"no_op": true,
|
2510 |
+
"replace_with_linear": false,
|
2511 |
+
"sparsify": null
|
2512 |
+
}
|
2513 |
+
},
|
2514 |
+
{
|
2515 |
+
"attention": {
|
2516 |
+
"n_heads_in_group": null,
|
2517 |
+
"no_op": true,
|
2518 |
+
"num_sink_tokens": null,
|
2519 |
+
"replace_with_linear": false,
|
2520 |
+
"sparsify": null,
|
2521 |
+
"unshifted_sink": false,
|
2522 |
+
"use_prefill_window_in_sink_attention": false,
|
2523 |
+
"window_length": null
|
2524 |
+
},
|
2525 |
+
"ffn": {
|
2526 |
+
"ffn_mult": null,
|
2527 |
+
"no_op": true,
|
2528 |
+
"replace_with_linear": false,
|
2529 |
+
"sparsify": null
|
2530 |
+
}
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"attention": {
|
2534 |
+
"n_heads_in_group": null,
|
2535 |
+
"no_op": true,
|
2536 |
+
"num_sink_tokens": null,
|
2537 |
+
"replace_with_linear": false,
|
2538 |
+
"sparsify": null,
|
2539 |
+
"unshifted_sink": false,
|
2540 |
+
"use_prefill_window_in_sink_attention": false,
|
2541 |
+
"window_length": null
|
2542 |
+
},
|
2543 |
+
"ffn": {
|
2544 |
+
"ffn_mult": null,
|
2545 |
+
"no_op": true,
|
2546 |
+
"replace_with_linear": false,
|
2547 |
+
"sparsify": null
|
2548 |
+
}
|
2549 |
+
},
|
2550 |
+
{
|
2551 |
+
"attention": {
|
2552 |
+
"n_heads_in_group": null,
|
2553 |
+
"no_op": true,
|
2554 |
+
"num_sink_tokens": null,
|
2555 |
+
"replace_with_linear": false,
|
2556 |
+
"sparsify": null,
|
2557 |
+
"unshifted_sink": false,
|
2558 |
+
"use_prefill_window_in_sink_attention": false,
|
2559 |
+
"window_length": null
|
2560 |
+
},
|
2561 |
+
"ffn": {
|
2562 |
+
"ffn_mult": null,
|
2563 |
+
"no_op": true,
|
2564 |
+
"replace_with_linear": false,
|
2565 |
+
"sparsify": null
|
2566 |
+
}
|
2567 |
+
},
|
2568 |
+
{
|
2569 |
+
"attention": {
|
2570 |
+
"n_heads_in_group": null,
|
2571 |
+
"no_op": true,
|
2572 |
+
"num_sink_tokens": null,
|
2573 |
+
"replace_with_linear": false,
|
2574 |
+
"sparsify": null,
|
2575 |
+
"unshifted_sink": false,
|
2576 |
+
"use_prefill_window_in_sink_attention": false,
|
2577 |
+
"window_length": null
|
2578 |
+
},
|
2579 |
+
"ffn": {
|
2580 |
+
"ffn_mult": null,
|
2581 |
+
"no_op": true,
|
2582 |
+
"replace_with_linear": false,
|
2583 |
+
"sparsify": null
|
2584 |
+
}
|
2585 |
+
},
|
2586 |
+
{
|
2587 |
+
"attention": {
|
2588 |
+
"n_heads_in_group": null,
|
2589 |
+
"no_op": true,
|
2590 |
+
"num_sink_tokens": null,
|
2591 |
+
"replace_with_linear": false,
|
2592 |
+
"sparsify": null,
|
2593 |
+
"unshifted_sink": false,
|
2594 |
+
"use_prefill_window_in_sink_attention": false,
|
2595 |
+
"window_length": null
|
2596 |
+
},
|
2597 |
+
"ffn": {
|
2598 |
+
"ffn_mult": 31.40625,
|
2599 |
+
"no_op": false,
|
2600 |
+
"replace_with_linear": false,
|
2601 |
+
"sparsify": null
|
2602 |
+
}
|
2603 |
+
},
|
2604 |
+
{
|
2605 |
+
"attention": {
|
2606 |
+
"n_heads_in_group": null,
|
2607 |
+
"no_op": true,
|
2608 |
+
"num_sink_tokens": null,
|
2609 |
+
"replace_with_linear": false,
|
2610 |
+
"sparsify": null,
|
2611 |
+
"unshifted_sink": false,
|
2612 |
+
"use_prefill_window_in_sink_attention": false,
|
2613 |
+
"window_length": null
|
2614 |
+
},
|
2615 |
+
"ffn": {
|
2616 |
+
"ffn_mult": null,
|
2617 |
+
"no_op": true,
|
2618 |
+
"replace_with_linear": false,
|
2619 |
+
"sparsify": null
|
2620 |
+
}
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"attention": {
|
2624 |
+
"n_heads_in_group": null,
|
2625 |
+
"no_op": true,
|
2626 |
+
"num_sink_tokens": null,
|
2627 |
+
"replace_with_linear": false,
|
2628 |
+
"sparsify": null,
|
2629 |
+
"unshifted_sink": false,
|
2630 |
+
"use_prefill_window_in_sink_attention": false,
|
2631 |
+
"window_length": null
|
2632 |
+
},
|
2633 |
+
"ffn": {
|
2634 |
+
"ffn_mult": null,
|
2635 |
+
"no_op": true,
|
2636 |
+
"replace_with_linear": false,
|
2637 |
+
"sparsify": null
|
2638 |
+
}
|
2639 |
+
},
|
2640 |
+
{
|
2641 |
+
"attention": {
|
2642 |
+
"n_heads_in_group": null,
|
2643 |
+
"no_op": true,
|
2644 |
+
"num_sink_tokens": null,
|
2645 |
+
"replace_with_linear": false,
|
2646 |
+
"sparsify": null,
|
2647 |
+
"unshifted_sink": false,
|
2648 |
+
"use_prefill_window_in_sink_attention": false,
|
2649 |
+
"window_length": null
|
2650 |
+
},
|
2651 |
+
"ffn": {
|
2652 |
+
"ffn_mult": null,
|
2653 |
+
"no_op": true,
|
2654 |
+
"replace_with_linear": false,
|
2655 |
+
"sparsify": null
|
2656 |
+
}
|
2657 |
+
},
|
2658 |
+
{
|
2659 |
+
"attention": {
|
2660 |
+
"n_heads_in_group": null,
|
2661 |
+
"no_op": true,
|
2662 |
+
"num_sink_tokens": null,
|
2663 |
+
"replace_with_linear": false,
|
2664 |
+
"sparsify": null,
|
2665 |
+
"unshifted_sink": false,
|
2666 |
+
"use_prefill_window_in_sink_attention": false,
|
2667 |
+
"window_length": null
|
2668 |
+
},
|
2669 |
+
"ffn": {
|
2670 |
+
"ffn_mult": null,
|
2671 |
+
"no_op": true,
|
2672 |
+
"replace_with_linear": false,
|
2673 |
+
"sparsify": null
|
2674 |
+
}
|
2675 |
+
},
|
2676 |
+
{
|
2677 |
+
"attention": {
|
2678 |
+
"n_heads_in_group": null,
|
2679 |
+
"no_op": true,
|
2680 |
+
"num_sink_tokens": null,
|
2681 |
+
"replace_with_linear": false,
|
2682 |
+
"sparsify": null,
|
2683 |
+
"unshifted_sink": false,
|
2684 |
+
"use_prefill_window_in_sink_attention": false,
|
2685 |
+
"window_length": null
|
2686 |
+
},
|
2687 |
+
"ffn": {
|
2688 |
+
"ffn_mult": null,
|
2689 |
+
"no_op": true,
|
2690 |
+
"replace_with_linear": false,
|
2691 |
+
"sparsify": null
|
2692 |
+
}
|
2693 |
+
},
|
2694 |
+
{
|
2695 |
+
"attention": {
|
2696 |
+
"n_heads_in_group": null,
|
2697 |
+
"no_op": true,
|
2698 |
+
"num_sink_tokens": null,
|
2699 |
+
"replace_with_linear": false,
|
2700 |
+
"sparsify": null,
|
2701 |
+
"unshifted_sink": false,
|
2702 |
+
"use_prefill_window_in_sink_attention": false,
|
2703 |
+
"window_length": null
|
2704 |
+
},
|
2705 |
+
"ffn": {
|
2706 |
+
"ffn_mult": 27.5625,
|
2707 |
+
"no_op": false,
|
2708 |
+
"replace_with_linear": false,
|
2709 |
+
"sparsify": null
|
2710 |
+
}
|
2711 |
+
},
|
2712 |
+
{
|
2713 |
+
"attention": {
|
2714 |
+
"n_heads_in_group": null,
|
2715 |
+
"no_op": true,
|
2716 |
+
"num_sink_tokens": null,
|
2717 |
+
"replace_with_linear": false,
|
2718 |
+
"sparsify": null,
|
2719 |
+
"unshifted_sink": false,
|
2720 |
+
"use_prefill_window_in_sink_attention": false,
|
2721 |
+
"window_length": null
|
2722 |
+
},
|
2723 |
+
"ffn": {
|
2724 |
+
"ffn_mult": 1.95,
|
2725 |
+
"no_op": false,
|
2726 |
+
"replace_with_linear": false,
|
2727 |
+
"sparsify": null
|
2728 |
+
}
|
2729 |
+
},
|
2730 |
+
{
|
2731 |
+
"attention": {
|
2732 |
+
"n_heads_in_group": 16,
|
2733 |
+
"no_op": false,
|
2734 |
+
"num_sink_tokens": null,
|
2735 |
+
"replace_with_linear": false,
|
2736 |
+
"sparsify": null,
|
2737 |
+
"unshifted_sink": false,
|
2738 |
+
"use_prefill_window_in_sink_attention": false,
|
2739 |
+
"window_length": null
|
2740 |
+
},
|
2741 |
+
"ffn": {
|
2742 |
+
"ffn_mult": 1.95,
|
2743 |
+
"no_op": false,
|
2744 |
+
"replace_with_linear": false,
|
2745 |
+
"sparsify": null
|
2746 |
+
}
|
2747 |
+
},
|
2748 |
+
{
|
2749 |
+
"attention": {
|
2750 |
+
"n_heads_in_group": 16,
|
2751 |
+
"no_op": false,
|
2752 |
+
"num_sink_tokens": null,
|
2753 |
+
"replace_with_linear": false,
|
2754 |
+
"sparsify": null,
|
2755 |
+
"unshifted_sink": false,
|
2756 |
+
"use_prefill_window_in_sink_attention": false,
|
2757 |
+
"window_length": null
|
2758 |
+
},
|
2759 |
+
"ffn": {
|
2760 |
+
"ffn_mult": 2.4375,
|
2761 |
+
"no_op": false,
|
2762 |
+
"replace_with_linear": false,
|
2763 |
+
"sparsify": null
|
2764 |
+
}
|
2765 |
+
},
|
2766 |
+
{
|
2767 |
+
"attention": {
|
2768 |
+
"n_heads_in_group": null,
|
2769 |
+
"no_op": true,
|
2770 |
+
"num_sink_tokens": null,
|
2771 |
+
"replace_with_linear": false,
|
2772 |
+
"sparsify": null,
|
2773 |
+
"unshifted_sink": false,
|
2774 |
+
"use_prefill_window_in_sink_attention": false,
|
2775 |
+
"window_length": null
|
2776 |
+
},
|
2777 |
+
"ffn": {
|
2778 |
+
"ffn_mult": null,
|
2779 |
+
"no_op": true,
|
2780 |
+
"replace_with_linear": false,
|
2781 |
+
"sparsify": null
|
2782 |
+
}
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"attention": {
|
2786 |
+
"n_heads_in_group": 16,
|
2787 |
+
"no_op": false,
|
2788 |
+
"num_sink_tokens": null,
|
2789 |
+
"replace_with_linear": false,
|
2790 |
+
"sparsify": null,
|
2791 |
+
"unshifted_sink": false,
|
2792 |
+
"use_prefill_window_in_sink_attention": false,
|
2793 |
+
"window_length": null
|
2794 |
+
},
|
2795 |
+
"ffn": {
|
2796 |
+
"ffn_mult": 2.4375,
|
2797 |
+
"no_op": false,
|
2798 |
+
"replace_with_linear": false,
|
2799 |
+
"sparsify": null
|
2800 |
+
}
|
2801 |
+
},
|
2802 |
+
{
|
2803 |
+
"attention": {
|
2804 |
+
"n_heads_in_group": 16,
|
2805 |
+
"no_op": false,
|
2806 |
+
"num_sink_tokens": null,
|
2807 |
+
"replace_with_linear": false,
|
2808 |
+
"sparsify": null,
|
2809 |
+
"unshifted_sink": false,
|
2810 |
+
"use_prefill_window_in_sink_attention": false,
|
2811 |
+
"window_length": null
|
2812 |
+
},
|
2813 |
+
"ffn": {
|
2814 |
+
"ffn_mult": 2.4375,
|
2815 |
+
"no_op": false,
|
2816 |
+
"replace_with_linear": false,
|
2817 |
+
"sparsify": null
|
2818 |
+
}
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"attention": {
|
2822 |
+
"n_heads_in_group": 16,
|
2823 |
+
"no_op": false,
|
2824 |
+
"num_sink_tokens": null,
|
2825 |
+
"replace_with_linear": false,
|
2826 |
+
"sparsify": null,
|
2827 |
+
"unshifted_sink": false,
|
2828 |
+
"use_prefill_window_in_sink_attention": false,
|
2829 |
+
"window_length": null
|
2830 |
+
},
|
2831 |
+
"ffn": {
|
2832 |
+
"ffn_mult": 3.4125,
|
2833 |
+
"no_op": false,
|
2834 |
+
"replace_with_linear": false,
|
2835 |
+
"sparsify": null
|
2836 |
+
}
|
2837 |
+
},
|
2838 |
+
{
|
2839 |
+
"attention": {
|
2840 |
+
"n_heads_in_group": 16,
|
2841 |
+
"no_op": false,
|
2842 |
+
"num_sink_tokens": null,
|
2843 |
+
"replace_with_linear": false,
|
2844 |
+
"sparsify": null,
|
2845 |
+
"unshifted_sink": false,
|
2846 |
+
"use_prefill_window_in_sink_attention": false,
|
2847 |
+
"window_length": null
|
2848 |
+
},
|
2849 |
+
"ffn": {
|
2850 |
+
"ffn_mult": 4.875,
|
2851 |
+
"no_op": false,
|
2852 |
+
"replace_with_linear": false,
|
2853 |
+
"sparsify": null
|
2854 |
+
}
|
2855 |
+
},
|
2856 |
+
{
|
2857 |
+
"attention": {
|
2858 |
+
"n_heads_in_group": 16,
|
2859 |
+
"no_op": false,
|
2860 |
+
"num_sink_tokens": null,
|
2861 |
+
"replace_with_linear": false,
|
2862 |
+
"sparsify": null,
|
2863 |
+
"unshifted_sink": false,
|
2864 |
+
"use_prefill_window_in_sink_attention": false,
|
2865 |
+
"window_length": null
|
2866 |
+
},
|
2867 |
+
"ffn": {
|
2868 |
+
"ffn_mult": 4.875,
|
2869 |
+
"no_op": false,
|
2870 |
+
"replace_with_linear": false,
|
2871 |
+
"sparsify": null
|
2872 |
+
}
|
2873 |
+
},
|
2874 |
+
{
|
2875 |
+
"attention": {
|
2876 |
+
"n_heads_in_group": 16,
|
2877 |
+
"no_op": false,
|
2878 |
+
"num_sink_tokens": null,
|
2879 |
+
"replace_with_linear": false,
|
2880 |
+
"sparsify": null,
|
2881 |
+
"unshifted_sink": false,
|
2882 |
+
"use_prefill_window_in_sink_attention": false,
|
2883 |
+
"window_length": null
|
2884 |
+
},
|
2885 |
+
"ffn": {
|
2886 |
+
"ffn_mult": 4.875,
|
2887 |
+
"no_op": false,
|
2888 |
+
"replace_with_linear": false,
|
2889 |
+
"sparsify": null
|
2890 |
+
}
|
2891 |
+
},
|
2892 |
+
{
|
2893 |
+
"attention": {
|
2894 |
+
"n_heads_in_group": 16,
|
2895 |
+
"no_op": false,
|
2896 |
+
"num_sink_tokens": null,
|
2897 |
+
"replace_with_linear": false,
|
2898 |
+
"sparsify": null,
|
2899 |
+
"unshifted_sink": false,
|
2900 |
+
"use_prefill_window_in_sink_attention": false,
|
2901 |
+
"window_length": null
|
2902 |
+
},
|
2903 |
+
"ffn": {
|
2904 |
+
"ffn_mult": 4.875,
|
2905 |
+
"no_op": false,
|
2906 |
+
"replace_with_linear": false,
|
2907 |
+
"sparsify": null
|
2908 |
+
}
|
2909 |
+
},
|
2910 |
+
{
|
2911 |
+
"attention": {
|
2912 |
+
"n_heads_in_group": 16,
|
2913 |
+
"no_op": false,
|
2914 |
+
"num_sink_tokens": null,
|
2915 |
+
"replace_with_linear": false,
|
2916 |
+
"sparsify": null,
|
2917 |
+
"unshifted_sink": false,
|
2918 |
+
"use_prefill_window_in_sink_attention": false,
|
2919 |
+
"window_length": null
|
2920 |
+
},
|
2921 |
+
"ffn": {
|
2922 |
+
"ffn_mult": 2.4375,
|
2923 |
+
"no_op": false,
|
2924 |
+
"replace_with_linear": false,
|
2925 |
+
"sparsify": null
|
2926 |
+
}
|
2927 |
+
}
|
2928 |
+
],
|
2929 |
+
"bos_token_id": 128000,
|
2930 |
+
"eos_token_id": [
|
2931 |
+
128001,
|
2932 |
+
128008,
|
2933 |
+
128009
|
2934 |
+
],
|
2935 |
+
"hidden_act": "silu",
|
2936 |
+
"hidden_size": 16384,
|
2937 |
+
"initializer_range": 0.02,
|
2938 |
+
"intermediate_size": null,
|
2939 |
+
"max_position_embeddings": 131072,
|
2940 |
+
"mlp_bias": false,
|
2941 |
+
"model_type": "nemotron-nas",
|
2942 |
+
"num_attention_heads": 128,
|
2943 |
+
"num_hidden_layers": 162,
|
2944 |
+
"num_key_value_heads": null,
|
2945 |
+
"pretraining_tp": 1,
|
2946 |
+
"quantization": {
|
2947 |
+
"group_size": 64,
|
2948 |
+
"bits": 5
|
2949 |
+
},
|
2950 |
+
"quantization_config": {
|
2951 |
+
"group_size": 64,
|
2952 |
+
"bits": 5
|
2953 |
+
},
|
2954 |
+
"rms_norm_eps": 1e-05,
|
2955 |
+
"rope_scaling": {
|
2956 |
+
"factor": 16.0,
|
2957 |
+
"high_freq_factor": 4.0,
|
2958 |
+
"low_freq_factor": 1.0,
|
2959 |
+
"original_max_position_embeddings": 8192,
|
2960 |
+
"rope_type": "llama3"
|
2961 |
+
},
|
2962 |
+
"rope_theta": 500000.0,
|
2963 |
+
"tie_word_embeddings": false,
|
2964 |
+
"torch_dtype": "bfloat16",
|
2965 |
+
"transformers_version": "4.45.1",
|
2966 |
+
"use_cache": true,
|
2967 |
+
"vocab_size": 128256
|
2968 |
+
}
|
configuration_decilm.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import dataclasses
|
17 |
+
import warnings
|
18 |
+
from typing import Dict, Any
|
19 |
+
|
20 |
+
from transformers.utils import is_flash_attn_2_available
|
21 |
+
|
22 |
+
from .block_config import BlockConfig
|
23 |
+
from .transformers_4_44_2__configuration_llama import LlamaConfig
|
24 |
+
from .transformers_4_44_2__modeling_rope_utils import \
|
25 |
+
rope_config_validation # fake import to make AutoConfig infer the dependency
|
26 |
+
|
27 |
+
rope_config_validation # this line is here to make sure that auto-formatting doesn't remove the import
|
28 |
+
|
29 |
+
|
30 |
+
class DeciLMConfig(LlamaConfig):
|
31 |
+
model_type = "nemotron-nas"
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
block_configs: list[dict] | list[BlockConfig] = None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
attn_implementation = kwargs.pop("attn_implementation", None)
|
39 |
+
if attn_implementation is None and is_flash_attn_2_available():
|
40 |
+
attn_implementation = "flash_attention_2"
|
41 |
+
|
42 |
+
if block_configs is not None:
|
43 |
+
if isinstance(block_configs[0], dict):
|
44 |
+
block_configs = [BlockConfig(**conf) for conf in block_configs]
|
45 |
+
|
46 |
+
using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs])
|
47 |
+
if using_unshifted_sink and attn_implementation != "eager":
|
48 |
+
warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink")
|
49 |
+
attn_implementation = "eager"
|
50 |
+
|
51 |
+
super().__init__(attn_implementation=attn_implementation, **kwargs)
|
52 |
+
|
53 |
+
self.intermediate_size = None
|
54 |
+
self.num_key_value_heads = None
|
55 |
+
|
56 |
+
if block_configs is not None:
|
57 |
+
assert len(block_configs) == self.num_hidden_layers
|
58 |
+
|
59 |
+
self.block_configs: list[BlockConfig] = block_configs
|
60 |
+
|
61 |
+
def to_dict(self) -> Dict[str, Any]:
|
62 |
+
self_dict = super().to_dict()
|
63 |
+
if self.block_configs is not None:
|
64 |
+
self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
|
65 |
+
return self_dict
|
model-00001-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d49f61929c79acd544495b219f27257be094ae251e5206136dcba28c8e25abfe
|
3 |
+
size 5222511151
|
model-00002-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce0189b3649ca44846ddb38c2cd7b644e44dd580aaa5c1e3202d291b6396115b
|
3 |
+
size 5170607401
|
model-00003-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa0540d8726c212be8f6395689e091b5713611146a652d717a11e0ad6b83aba7
|
3 |
+
size 5063845654
|
model-00004-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c0ef1028792ea404fde65c1a39222227feb4183dbd303da38fcb02203f3eb91
|
3 |
+
size 4982969933
|
model-00005-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e385ea5ecd094a244d7adf21d424a0b6d34a5f89c7b797e3bc0430d06aa38ed5
|
3 |
+
size 4982969913
|
model-00006-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cfff97517254a550b9c394798479da68287f4a11b13e0e9688ac0be0f20e6cf
|
3 |
+
size 5366782906
|
model-00007-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5a0817b9759c38492e3aac93360f4af9bff66fd35815a2b66c4ea3015a5f4cb
|
3 |
+
size 5366918587
|
model-00008-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f384e885337a13ed9eb3c63130309b7b1164a9401e605b5b481361a7dd34a2f
|
3 |
+
size 5207364379
|
model-00009-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4bfc9059e4703389eb9ddca329a479243261ef128ae1a936d2ca64111a46e3c
|
3 |
+
size 5366782890
|
model-00010-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa876744b1888ba4f9bbb07b7cf892b29f01fa43d00a75ceeaf17300918e78ca
|
3 |
+
size 4991391523
|
model-00011-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2bf6ea9cf567d1fdd5fa557285510d5fd745c949140f905d9fcfadb55972521
|
3 |
+
size 4982969919
|
model-00012-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:564cde10363c0b1b63edbf9d56289dd797fc820c9c300ce8f9992e85f30a9ecc
|
3 |
+
size 5366782898
|
model-00013-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:400ba8e589409f1899834ecb3ad6354643ed11c3c16a7b75c09a761851de91aa
|
3 |
+
size 4991391503
|
model-00014-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13b2c2877462d63037cd2411aa9b36230c1b51690b4b35e9eebdef6d711842af
|
3 |
+
size 4982969937
|
model-00015-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70a1559348c0841080144be70111ffde5c5da73b6cc65724e82b1154063b074d
|
3 |
+
size 5366782902
|
model-00016-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94402d41c512143a128c6f6e8e29ce89ffe3a90168bfe75ea38030667247695a
|
3 |
+
size 5334606241
|
model-00017-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c3347aeec9112fc6533c9f57f624dec8198e190dcb6c277b4411845e7603ef5
|
3 |
+
size 5196457278
|
model-00018-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa85a5da90c9ac7f2a7fa18f165e292876125ac7f8f0b87bbffd6385a08e631a
|
3 |
+
size 5190688356
|
model-00019-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa4b3f8d23b0ad90f44bfbd177b14768d92b8da5be6deed9d0b879af68bc3509
|
3 |
+
size 5282964127
|
model-00020-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b87b579786a33a22e0067f4240261515562eb4b79542eda1796386767f73eddf
|
3 |
+
size 5279979439
|
model-00021-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4a61de8001adc24acbb5aa0059336efab5b0034f8705d4b121cea528627ccbe
|
3 |
+
size 1983972983
|
model-00022-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09707e79711414e6c3c292bda16a278a46455eb7118b5e5926ac9896de762eb8
|
3 |
+
size 4498391419
|
model-00023-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81fb9daa903a77d4c149844b0663824c6237f9ce0b86b5fafcef666812efde09
|
3 |
+
size 4498391419
|
model-00024-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0757b27b4762c7444f15a29aedc558ff162b2bd8473c81837673e1e7f658422
|
3 |
+
size 4498424294
|
model-00025-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f61f904ed146d2235c88b0c6d6cf4cd042f523da7c16ed2f723bcc10817baed
|
3 |
+
size 4798284155
|
model-00026-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:385e1539699a73953e1787e90397c8adbd6ca6bbf966641693135777e3ae9c01
|
3 |
+
size 4798284155
|
model-00027-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6d326fb220cff958d75010358440cb10a7011c7902ef37e6b16d9205e52aeef
|
3 |
+
size 4798317030
|
model-00028-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b3fe373ccb7e2a680f798cb4bc3cce63771ebacab24558a5288fa3d8db6d11e
|
3 |
+
size 3864002939
|
model-00029-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db7b7b76f131d507750cb846b3e45481de6e83ef45f9db6ef4aa56889c51e5a0
|
3 |
+
size 3864002939
|
model-00030-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e1746e6c65cdd0c662c2411e85a77afd7b66925c15b73e392a7d071fa1839c3
|
3 |
+
size 3864035814
|
model-00031-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1a66a9907bf9773cd7d9f9c7f4ce2a0fb262604f70f60b104551bc6d1bae4dc
|
3 |
+
size 3391095163
|
model-00032-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:680b8585a464806b33cc65e03808111ef269c36766286ed515e8eaaf6064f58f
|
3 |
+
size 3391095163
|
model-00033-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8ffd059d32126994c8461142e2c9f528ca2e1ed520ad1722e864109dfd330f
|
3 |
+
size 5236723941
|
model-00034-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b928599551a8105fe29fcf5fd7df498264f7f75ca62f3dec7da8a6fb5d4808b
|
3 |
+
size 5109950524
|
model-00035-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13980621da56136f212fcdb2544cd6ff08fab0eb6b56133cfd4a9cf227184afe
|
3 |
+
size 5196422353
|
model-00036-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5041e415d4547071c2ba52a4c98751fc314c7d2a5ec128fa84a1966f53611c1c
|
3 |
+
size 5282896248
|
model-00037-of-00037.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf6566e695a19fce29bdb12f901382325224c6ed2c7664eeaacd5c4de33c1711
|
3 |
+
size 1444675892
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_decilm.py
ADDED
@@ -0,0 +1,1681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation, Google Inc, HuggingFace Inc, EleutherAI. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code for Nvidia's model is based on the Llama modeling code by HuggingFace,
|
5 |
+
# which is in turn based on EleutherAI's GPT-NeoX library and the GPT-NeoX and
|
6 |
+
# OPT implementations in this library.
|
7 |
+
# Sliding window code based on Gemma2 by Google.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers import GenerationConfig
|
30 |
+
from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING, GenerationMixin, GenerateOutput
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
33 |
+
from transformers.utils import (
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
is_flash_attn_greater_or_equal_2_10,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
|
41 |
+
from .block_config import AttentionConfig, FFNConfig
|
42 |
+
from .configuration_decilm import DeciLMConfig
|
43 |
+
from .transformers_4_44_2__activations import ACT2FN
|
44 |
+
from .transformers_4_44_2__cache_utils import Cache, StaticCache
|
45 |
+
from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
|
46 |
+
from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
|
47 |
+
from .transformers_4_44_2__modeling_outputs import (
|
48 |
+
BaseModelOutputWithPast,
|
49 |
+
CausalLMOutputWithPast,
|
50 |
+
QuestionAnsweringModelOutput,
|
51 |
+
SequenceClassifierOutputWithPast,
|
52 |
+
TokenClassifierOutput,
|
53 |
+
)
|
54 |
+
from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
55 |
+
from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS
|
56 |
+
from .variable_cache import VariableCache
|
57 |
+
|
58 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM"
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "DeciLMConfig"
|
62 |
+
|
63 |
+
|
64 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
65 |
+
attention_mask: torch.Tensor,
|
66 |
+
sequence_length: int,
|
67 |
+
target_length: int,
|
68 |
+
dtype: torch.dtype,
|
69 |
+
device: torch.device,
|
70 |
+
min_dtype: float,
|
71 |
+
cache_position: torch.Tensor,
|
72 |
+
batch_size: int,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
76 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
attention_mask (`torch.Tensor`):
|
80 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
81 |
+
sequence_length (`int`):
|
82 |
+
The sequence length being processed.
|
83 |
+
target_length (`int`):
|
84 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The dtype to use for the 4D attention mask.
|
87 |
+
device (`torch.device`):
|
88 |
+
The device to place the 4D attention mask on.
|
89 |
+
min_dtype (`float`):
|
90 |
+
The minimum value representable with the dtype `dtype`.
|
91 |
+
cache_position (`torch.Tensor`):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
93 |
+
batch_size (`torch.Tensor`):
|
94 |
+
Batch size.
|
95 |
+
"""
|
96 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
97 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
98 |
+
causal_mask = attention_mask
|
99 |
+
else:
|
100 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
101 |
+
if sequence_length != 1:
|
102 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
103 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
107 |
+
mask_length = attention_mask.shape[-1]
|
108 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
109 |
+
padding_mask = padding_mask == 0
|
110 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
111 |
+
padding_mask, min_dtype
|
112 |
+
)
|
113 |
+
|
114 |
+
return causal_mask
|
115 |
+
|
116 |
+
|
117 |
+
class DeciLMRMSNorm(nn.Module):
|
118 |
+
def __init__(self, hidden_size, eps=1e-6):
|
119 |
+
"""
|
120 |
+
DeciLMRMSNorm is equivalent to T5LayerNorm
|
121 |
+
"""
|
122 |
+
super().__init__()
|
123 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
124 |
+
self.variance_epsilon = eps
|
125 |
+
|
126 |
+
def forward(self, hidden_states):
|
127 |
+
input_dtype = hidden_states.dtype
|
128 |
+
hidden_states = hidden_states.to(torch.float32)
|
129 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
130 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
131 |
+
return self.weight * hidden_states.to(input_dtype)
|
132 |
+
|
133 |
+
def extra_repr(self):
|
134 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
135 |
+
|
136 |
+
|
137 |
+
ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm)
|
138 |
+
|
139 |
+
|
140 |
+
class DeciLMRotaryEmbedding(nn.Module):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
dim=None,
|
144 |
+
max_position_embeddings=2048,
|
145 |
+
base=10000,
|
146 |
+
device=None,
|
147 |
+
scaling_factor=1.0,
|
148 |
+
rope_type="default",
|
149 |
+
config: Optional[DeciLMConfig] = None,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
# TODO (joao): remove the `if` below, only used for BC
|
153 |
+
self.rope_kwargs = {}
|
154 |
+
if config is None:
|
155 |
+
logger.warning_once(
|
156 |
+
"`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
157 |
+
"`config` argument. All other arguments will be removed in v4.45"
|
158 |
+
)
|
159 |
+
self.rope_kwargs = {
|
160 |
+
"rope_type": rope_type,
|
161 |
+
"factor": scaling_factor,
|
162 |
+
"dim": dim,
|
163 |
+
"base": base,
|
164 |
+
"max_position_embeddings": max_position_embeddings,
|
165 |
+
}
|
166 |
+
self.rope_type = rope_type
|
167 |
+
self.max_seq_len_cached = max_position_embeddings
|
168 |
+
self.original_max_seq_len = max_position_embeddings
|
169 |
+
else:
|
170 |
+
# BC: "rope_type" was originally "type"
|
171 |
+
if config.rope_scaling is not None:
|
172 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
173 |
+
else:
|
174 |
+
self.rope_type = "default"
|
175 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
176 |
+
self.original_max_seq_len = config.max_position_embeddings
|
177 |
+
|
178 |
+
self.config = config
|
179 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
180 |
+
|
181 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
182 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
183 |
+
self.original_inv_freq = self.inv_freq
|
184 |
+
|
185 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
186 |
+
"""
|
187 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
188 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
189 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
190 |
+
"""
|
191 |
+
seq_len = torch.max(position_ids) + 1
|
192 |
+
if seq_len > self.max_seq_len_cached: # growth
|
193 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
194 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
195 |
+
)
|
196 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
197 |
+
self.max_seq_len_cached = seq_len
|
198 |
+
|
199 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
200 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
201 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
202 |
+
|
203 |
+
@torch.no_grad()
|
204 |
+
def forward(self, x, position_ids):
|
205 |
+
if "dynamic" in self.rope_type:
|
206 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
207 |
+
|
208 |
+
# Core RoPE block
|
209 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
210 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
211 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
212 |
+
device_type = x.device.type
|
213 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
214 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
215 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
216 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
+
cos = emb.cos()
|
218 |
+
sin = emb.sin()
|
219 |
+
|
220 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
221 |
+
cos = cos * self.attention_scaling
|
222 |
+
sin = sin * self.attention_scaling
|
223 |
+
|
224 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
225 |
+
|
226 |
+
|
227 |
+
class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
228 |
+
"""DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
229 |
+
|
230 |
+
def __init__(self, *args, **kwargs):
|
231 |
+
logger.warning_once(
|
232 |
+
"`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
233 |
+
"`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
234 |
+
)
|
235 |
+
kwargs["rope_type"] = "linear"
|
236 |
+
super().__init__(*args, **kwargs)
|
237 |
+
|
238 |
+
|
239 |
+
class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
240 |
+
"""DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
241 |
+
|
242 |
+
def __init__(self, *args, **kwargs):
|
243 |
+
logger.warning_once(
|
244 |
+
"`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
245 |
+
"`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
246 |
+
"__init__)."
|
247 |
+
)
|
248 |
+
kwargs["rope_type"] = "dynamic"
|
249 |
+
super().__init__(*args, **kwargs)
|
250 |
+
|
251 |
+
|
252 |
+
def rotate_half(x):
|
253 |
+
"""Rotates half the hidden dims of the input."""
|
254 |
+
x1 = x[..., : x.shape[-1] // 2]
|
255 |
+
x2 = x[..., x.shape[-1] // 2:]
|
256 |
+
return torch.cat((-x2, x1), dim=-1)
|
257 |
+
|
258 |
+
|
259 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
260 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
q (`torch.Tensor`): The query tensor.
|
264 |
+
k (`torch.Tensor`): The key tensor.
|
265 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
266 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
267 |
+
position_ids (`torch.Tensor`, *optional*):
|
268 |
+
Deprecated and unused.
|
269 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
270 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
271 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
272 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
273 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
274 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
275 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
276 |
+
Returns:
|
277 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
278 |
+
"""
|
279 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
280 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
281 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
282 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
283 |
+
return q_embed, k_embed
|
284 |
+
|
285 |
+
|
286 |
+
class DeciLMMLP(nn.Module):
|
287 |
+
def __init__(self,
|
288 |
+
config: DeciLMConfig,
|
289 |
+
ffn_config: FFNConfig,
|
290 |
+
):
|
291 |
+
super().__init__()
|
292 |
+
self.config = config
|
293 |
+
self.ffn_config = ffn_config
|
294 |
+
self.hidden_size = config.hidden_size
|
295 |
+
self.intermediate_size = _ffn_mult_to_intermediate_size(
|
296 |
+
ffn_config.ffn_mult, config.hidden_size) # DeciLM-specific code
|
297 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
298 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
299 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
300 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
301 |
+
|
302 |
+
if ffn_config.sparsify is not None:
|
303 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
if self.config.pretraining_tp > 1:
|
307 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
308 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
309 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
310 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
311 |
+
|
312 |
+
gate_proj = torch.cat(
|
313 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
314 |
+
)
|
315 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
316 |
+
|
317 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
318 |
+
down_proj = [
|
319 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
320 |
+
]
|
321 |
+
down_proj = sum(down_proj)
|
322 |
+
else:
|
323 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
324 |
+
|
325 |
+
return down_proj
|
326 |
+
|
327 |
+
|
328 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
329 |
+
"""
|
330 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
331 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
332 |
+
"""
|
333 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
334 |
+
if n_rep == 1:
|
335 |
+
return hidden_states
|
336 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
337 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
338 |
+
|
339 |
+
|
340 |
+
class DeciLMAttention(nn.Module):
|
341 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
342 |
+
|
343 |
+
def __init__(self,
|
344 |
+
config: DeciLMConfig,
|
345 |
+
attention_config: AttentionConfig,
|
346 |
+
layer_idx: Optional[int] = None,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.config = config
|
350 |
+
self.attention_config = attention_config
|
351 |
+
self.layer_idx = layer_idx
|
352 |
+
if layer_idx is None:
|
353 |
+
logger.warning_once(
|
354 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
355 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
356 |
+
"when creating this class."
|
357 |
+
)
|
358 |
+
|
359 |
+
self.attention_dropout = config.attention_dropout
|
360 |
+
self.hidden_size = config.hidden_size
|
361 |
+
self.num_heads = config.num_attention_heads
|
362 |
+
self.head_dim = self.hidden_size // self.num_heads
|
363 |
+
self.num_key_value_groups = attention_config.n_heads_in_group # DeciLM-specific code
|
364 |
+
self.num_key_value_heads = self.num_heads // self.num_key_value_groups # DeciLM-specific code
|
365 |
+
self.max_position_embeddings = config.max_position_embeddings
|
366 |
+
self.rope_theta = config.rope_theta
|
367 |
+
self.is_causal = True
|
368 |
+
|
369 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
370 |
+
raise ValueError(
|
371 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
372 |
+
f" and `num_heads`: {self.num_heads})."
|
373 |
+
)
|
374 |
+
|
375 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
376 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
377 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
378 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
379 |
+
|
380 |
+
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
|
381 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=self.config)
|
382 |
+
|
383 |
+
if attention_config.sparsify is not None:
|
384 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
hidden_states: torch.Tensor,
|
389 |
+
attention_mask: Optional[torch.Tensor] = None,
|
390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
391 |
+
past_key_value: Optional[Cache] = None,
|
392 |
+
output_attentions: bool = False,
|
393 |
+
use_cache: bool = False,
|
394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
395 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
396 |
+
**kwargs,
|
397 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
398 |
+
bsz, q_len, _ = hidden_states.size()
|
399 |
+
if self.config.pretraining_tp > 1:
|
400 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
401 |
+
query_slices = self.q_proj.weight.split(
|
402 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
403 |
+
)
|
404 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
405 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
406 |
+
|
407 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
408 |
+
query_states = torch.cat(query_states, dim=-1)
|
409 |
+
|
410 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
411 |
+
key_states = torch.cat(key_states, dim=-1)
|
412 |
+
|
413 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
414 |
+
value_states = torch.cat(value_states, dim=-1)
|
415 |
+
|
416 |
+
else:
|
417 |
+
query_states = self.q_proj(hidden_states)
|
418 |
+
key_states = self.k_proj(hidden_states)
|
419 |
+
value_states = self.v_proj(hidden_states)
|
420 |
+
|
421 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
422 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
423 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
424 |
+
|
425 |
+
if position_embeddings is None:
|
426 |
+
logger.warning_once(
|
427 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
428 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
429 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
430 |
+
"removed and `position_embeddings` will be mandatory."
|
431 |
+
)
|
432 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
433 |
+
else:
|
434 |
+
cos, sin = position_embeddings
|
435 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
436 |
+
|
437 |
+
if past_key_value is not None:
|
438 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
439 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
440 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
441 |
+
|
442 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
443 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
444 |
+
|
445 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
446 |
+
|
447 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
448 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
449 |
+
attn_weights = attn_weights + causal_mask
|
450 |
+
|
451 |
+
# upcast attention to fp32
|
452 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
453 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
454 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
455 |
+
|
456 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
457 |
+
raise ValueError(
|
458 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
459 |
+
f" {attn_output.size()}"
|
460 |
+
)
|
461 |
+
|
462 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
463 |
+
|
464 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
465 |
+
|
466 |
+
if self.config.pretraining_tp > 1:
|
467 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
468 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
469 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
470 |
+
else:
|
471 |
+
attn_output = self.o_proj(attn_output)
|
472 |
+
|
473 |
+
if not output_attentions:
|
474 |
+
attn_weights = None
|
475 |
+
|
476 |
+
return attn_output, attn_weights, past_key_value
|
477 |
+
|
478 |
+
|
479 |
+
class DeciLMFlashAttention2(DeciLMAttention):
|
480 |
+
"""
|
481 |
+
DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays
|
482 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
483 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
484 |
+
"""
|
485 |
+
|
486 |
+
def __init__(self, *args, **kwargs):
|
487 |
+
super().__init__(*args, **kwargs)
|
488 |
+
|
489 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
490 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
491 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
492 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
493 |
+
|
494 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
495 |
+
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
hidden_states: torch.Tensor,
|
499 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
500 |
+
position_ids: Optional[torch.LongTensor] = None,
|
501 |
+
past_key_value: Optional[Cache] = None,
|
502 |
+
output_attentions: bool = False,
|
503 |
+
use_cache: bool = False,
|
504 |
+
cache_position: Optional[torch.LongTensor] = None,
|
505 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
506 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
507 |
+
output_attentions = False
|
508 |
+
|
509 |
+
bsz, q_len, _ = hidden_states.size()
|
510 |
+
|
511 |
+
query_states = self.q_proj(hidden_states)
|
512 |
+
key_states = self.k_proj(hidden_states)
|
513 |
+
value_states = self.v_proj(hidden_states)
|
514 |
+
|
515 |
+
# Flash attention requires the input to have the shape
|
516 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
517 |
+
# therefore we just need to keep the original shape
|
518 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
519 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
520 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
521 |
+
|
522 |
+
if position_embeddings is None:
|
523 |
+
logger.warning_once(
|
524 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
525 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
526 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
527 |
+
"removed and `position_embeddings` will be mandatory."
|
528 |
+
)
|
529 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
530 |
+
else:
|
531 |
+
cos, sin = position_embeddings
|
532 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
533 |
+
|
534 |
+
if past_key_value is not None:
|
535 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
536 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
537 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
538 |
+
|
539 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
540 |
+
# to be able to avoid many of these transpose/reshape/view.
|
541 |
+
query_states = query_states.transpose(1, 2)
|
542 |
+
key_states = key_states.transpose(1, 2)
|
543 |
+
value_states = value_states.transpose(1, 2)
|
544 |
+
|
545 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
546 |
+
|
547 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
548 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
549 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
550 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
551 |
+
# in fp32. (DeciLMRMSNorm handles it correctly)
|
552 |
+
|
553 |
+
input_dtype = query_states.dtype
|
554 |
+
if input_dtype == torch.float32:
|
555 |
+
if torch.is_autocast_enabled():
|
556 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
557 |
+
# Handle the case where the model is quantized
|
558 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
559 |
+
target_dtype = self.config._pre_quantization_dtype
|
560 |
+
else:
|
561 |
+
target_dtype = self.q_proj.weight.dtype
|
562 |
+
|
563 |
+
logger.warning_once(
|
564 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
565 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
566 |
+
f" {target_dtype}."
|
567 |
+
)
|
568 |
+
|
569 |
+
query_states = query_states.to(target_dtype)
|
570 |
+
key_states = key_states.to(target_dtype)
|
571 |
+
value_states = value_states.to(target_dtype)
|
572 |
+
|
573 |
+
attn_output = _flash_attention_forward(
|
574 |
+
query_states,
|
575 |
+
key_states,
|
576 |
+
value_states,
|
577 |
+
attention_mask,
|
578 |
+
q_len,
|
579 |
+
position_ids=position_ids,
|
580 |
+
dropout=dropout_rate,
|
581 |
+
sliding_window=self.sliding_window,
|
582 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
583 |
+
is_causal=self.is_causal,
|
584 |
+
)
|
585 |
+
|
586 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
587 |
+
attn_output = self.o_proj(attn_output)
|
588 |
+
|
589 |
+
if not output_attentions:
|
590 |
+
attn_weights = None
|
591 |
+
|
592 |
+
return attn_output, attn_weights, past_key_value
|
593 |
+
|
594 |
+
|
595 |
+
DECILM_ATTENTION_CLASSES = {
|
596 |
+
"eager": DeciLMAttention,
|
597 |
+
"flash_attention_2": DeciLMFlashAttention2,
|
598 |
+
}
|
599 |
+
|
600 |
+
|
601 |
+
class DeciLMDecoderLayer(nn.Module):
|
602 |
+
# DeciLM-specific code
|
603 |
+
def __init__(self, config: DeciLMConfig, layer_idx: int):
|
604 |
+
super().__init__()
|
605 |
+
self.config = config
|
606 |
+
self.hidden_size = config.hidden_size
|
607 |
+
self.block_config = config.block_configs[layer_idx]
|
608 |
+
self.attention_config = self.block_config.attention
|
609 |
+
self.ffn_config = self.block_config.ffn
|
610 |
+
|
611 |
+
if not self.attention_config.no_op:
|
612 |
+
self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
613 |
+
if not self.attention_config.replace_with_linear:
|
614 |
+
self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation](
|
615 |
+
config=config, attention_config=self.attention_config, layer_idx=layer_idx)
|
616 |
+
else:
|
617 |
+
self.self_attn = DeciLMLinearAttention(config)
|
618 |
+
|
619 |
+
if not self.ffn_config.no_op:
|
620 |
+
self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
621 |
+
if not self.ffn_config.replace_with_linear:
|
622 |
+
self.mlp = DeciLMMLP(config, self.ffn_config)
|
623 |
+
else:
|
624 |
+
self.mlp = DeciLMLinearMLP(config)
|
625 |
+
|
626 |
+
self.is_sliding = self.attention_config.is_sliding
|
627 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
628 |
+
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
hidden_states: torch.Tensor,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_value: Optional[Cache] = None,
|
635 |
+
output_attentions: Optional[bool] = False,
|
636 |
+
use_cache: Optional[bool] = False,
|
637 |
+
cache_position: Optional[torch.LongTensor] = None,
|
638 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
639 |
+
**kwargs,
|
640 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
641 |
+
"""
|
642 |
+
Args:
|
643 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
644 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
645 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
646 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
647 |
+
output_attentions (`bool`, *optional*):
|
648 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
649 |
+
returned tensors for more detail.
|
650 |
+
use_cache (`bool`, *optional*):
|
651 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
652 |
+
(see `past_key_values`).
|
653 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
654 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
655 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
656 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
657 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
658 |
+
with `head_dim` being the embedding dimension of each attention head.
|
659 |
+
kwargs (`dict`, *optional*):
|
660 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
661 |
+
into the model
|
662 |
+
"""
|
663 |
+
if self.attention_config.unshifted_sink and self.attention_config.is_sink:
|
664 |
+
attention_mask = self._unshifted_sink_mask(
|
665 |
+
attention_mask, hidden_states,
|
666 |
+
self.attention_config.window_length, self.attention_config.num_sink_tokens)
|
667 |
+
else:
|
668 |
+
attention_mask = self._gemma2_window_mask(attention_mask, hidden_states, past_key_value)
|
669 |
+
|
670 |
+
self_attn_weights = None
|
671 |
+
present_key_value = past_key_value
|
672 |
+
if self.attention_config.no_op:
|
673 |
+
pass
|
674 |
+
elif self.attention_config.replace_with_linear:
|
675 |
+
residual = hidden_states
|
676 |
+
hidden_states = self.input_layernorm(hidden_states)
|
677 |
+
hidden_states = self.self_attn(hidden_states)
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
else:
|
680 |
+
residual = hidden_states
|
681 |
+
hidden_states = self.input_layernorm(hidden_states)
|
682 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
683 |
+
hidden_states=hidden_states,
|
684 |
+
attention_mask=attention_mask,
|
685 |
+
position_ids=position_ids,
|
686 |
+
past_key_value=past_key_value,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
use_cache=use_cache,
|
689 |
+
cache_position=cache_position,
|
690 |
+
position_embeddings=position_embeddings,
|
691 |
+
**kwargs,
|
692 |
+
)
|
693 |
+
hidden_states = residual + hidden_states
|
694 |
+
|
695 |
+
if not self.ffn_config.no_op:
|
696 |
+
residual = hidden_states
|
697 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
698 |
+
hidden_states = self.mlp(hidden_states)
|
699 |
+
hidden_states = residual + hidden_states
|
700 |
+
|
701 |
+
outputs = (hidden_states,)
|
702 |
+
|
703 |
+
if output_attentions:
|
704 |
+
outputs += (self_attn_weights,)
|
705 |
+
|
706 |
+
if use_cache:
|
707 |
+
outputs += (present_key_value,)
|
708 |
+
|
709 |
+
return outputs
|
710 |
+
|
711 |
+
def _gemma2_window_mask(self,
|
712 |
+
attention_mask: Optional[torch.Tensor],
|
713 |
+
hidden_states: torch.Tensor,
|
714 |
+
past_key_value: Optional[VariableCache],
|
715 |
+
) -> Optional[torch.Tensor]:
|
716 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
717 |
+
# Flash-attn is a 2D tensor
|
718 |
+
if self.config._attn_implementation == "flash_attention_2":
|
719 |
+
if past_key_value is not None: # when decoding
|
720 |
+
attention_mask = attention_mask[:, -self.sliding_window:]
|
721 |
+
else:
|
722 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
723 |
+
sliding_window_mask = torch.tril(
|
724 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
725 |
+
)
|
726 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
727 |
+
if attention_mask.shape[-1] <= 1: # when decoding
|
728 |
+
attention_mask = attention_mask[:, :, :, -self.sliding_window:]
|
729 |
+
return attention_mask
|
730 |
+
|
731 |
+
def _unshifted_sink_mask(self,
|
732 |
+
attention_mask: torch.Tensor,
|
733 |
+
hidden_states: torch.Tensor,
|
734 |
+
window_length: int,
|
735 |
+
num_sink_tokens: Optional[int],
|
736 |
+
) -> torch.Tensor:
|
737 |
+
assert self.config._attn_implementation == "eager", "Unshifted sink is only supported in 'eager' mode."
|
738 |
+
assert attention_mask is not None, "The attention mask seems to not be prepared"
|
739 |
+
|
740 |
+
attention_mask = attention_mask.clone()
|
741 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
742 |
+
|
743 |
+
if window_length == 0:
|
744 |
+
attention_mask = torch.full_like(attention_mask, fill_value=min_dtype)
|
745 |
+
else:
|
746 |
+
query_length = attention_mask.shape[-2]
|
747 |
+
is_decode = (query_length == 1)
|
748 |
+
if is_decode:
|
749 |
+
attention_mask[:, :, :, :-window_length] = min_dtype
|
750 |
+
else:
|
751 |
+
sliding_window_mask = torch.tril(
|
752 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-window_length
|
753 |
+
)
|
754 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
755 |
+
|
756 |
+
attention_mask[:, :, :, :num_sink_tokens] = 0
|
757 |
+
return attention_mask
|
758 |
+
|
759 |
+
|
760 |
+
DECILM_START_DOCSTRING = r"""
|
761 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
762 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
763 |
+
etc.)
|
764 |
+
|
765 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
766 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
767 |
+
and behavior.
|
768 |
+
|
769 |
+
Parameters:
|
770 |
+
config ([`DeciLMConfig`]):
|
771 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
772 |
+
load the weights associated with the model, only the configuration. Check out the
|
773 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
774 |
+
"""
|
775 |
+
|
776 |
+
|
777 |
+
@add_start_docstrings(
|
778 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
779 |
+
DECILM_START_DOCSTRING,
|
780 |
+
)
|
781 |
+
class DeciLMPreTrainedModel(PreTrainedModel):
|
782 |
+
config_class = DeciLMConfig
|
783 |
+
base_model_prefix = "model"
|
784 |
+
supports_gradient_checkpointing = True
|
785 |
+
_no_split_modules = ["DeciLMDecoderLayer"]
|
786 |
+
_skip_keys_device_placement = ["past_key_values"]
|
787 |
+
_supports_flash_attn_2 = True
|
788 |
+
_supports_sdpa = False
|
789 |
+
_supports_cache_class = True
|
790 |
+
_supports_quantized_cache = False
|
791 |
+
_supports_static_cache = True
|
792 |
+
|
793 |
+
def _init_weights(self, module):
|
794 |
+
std = self.config.initializer_range
|
795 |
+
if isinstance(module, nn.Linear):
|
796 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
797 |
+
if module.bias is not None:
|
798 |
+
module.bias.data.zero_()
|
799 |
+
elif isinstance(module, nn.Embedding):
|
800 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
801 |
+
if module.padding_idx is not None:
|
802 |
+
module.weight.data[module.padding_idx].zero_()
|
803 |
+
|
804 |
+
def _prepare_generation_config(
|
805 |
+
self, generation_config: Optional[GenerationConfig], **kwargs: dict
|
806 |
+
) -> tuple[GenerationConfig, dict]:
|
807 |
+
# DeciLM-specific code
|
808 |
+
generation_config, model_kwargs = super()._prepare_generation_config(generation_config, **kwargs)
|
809 |
+
generation_config.cache_implementation = "variable"
|
810 |
+
NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache
|
811 |
+
return generation_config, model_kwargs
|
812 |
+
|
813 |
+
|
814 |
+
DECILM_INPUTS_DOCSTRING = r"""
|
815 |
+
Args:
|
816 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
817 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
818 |
+
it.
|
819 |
+
|
820 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
821 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
822 |
+
|
823 |
+
[What are input IDs?](../glossary#input-ids)
|
824 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
826 |
+
|
827 |
+
- 1 for tokens that are **not masked**,
|
828 |
+
- 0 for tokens that are **masked**.
|
829 |
+
|
830 |
+
[What are attention masks?](../glossary#attention-mask)
|
831 |
+
|
832 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
833 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
834 |
+
|
835 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
836 |
+
`past_key_values`).
|
837 |
+
|
838 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
839 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
840 |
+
information on the default strategy.
|
841 |
+
|
842 |
+
- 1 indicates the head is **not masked**,
|
843 |
+
- 0 indicates the head is **masked**.
|
844 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
846 |
+
config.n_positions - 1]`.
|
847 |
+
|
848 |
+
[What are position IDs?](../glossary#position-ids)
|
849 |
+
past_key_values (`VariableCache`, *optional*):
|
850 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
851 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
852 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
853 |
+
|
854 |
+
If passed to the forward function, past_key_values must be a VariableCache object (see imports).
|
855 |
+
For generation purposes, this is already handled inside model.generate().
|
856 |
+
|
857 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
858 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
859 |
+
of shape `(batch_size, sequence_length)`.
|
860 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
861 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
862 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
863 |
+
model's internal embedding lookup matrix.
|
864 |
+
use_cache (`bool`, *optional*):
|
865 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
866 |
+
`past_key_values`).
|
867 |
+
output_attentions (`bool`, *optional*):
|
868 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
869 |
+
tensors for more detail.
|
870 |
+
output_hidden_states (`bool`, *optional*):
|
871 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
872 |
+
more detail.
|
873 |
+
return_dict (`bool`, *optional*):
|
874 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
875 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
876 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
877 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
878 |
+
the complete sequence length.
|
879 |
+
"""
|
880 |
+
|
881 |
+
|
882 |
+
@add_start_docstrings(
|
883 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
884 |
+
DECILM_START_DOCSTRING,
|
885 |
+
)
|
886 |
+
class DeciLMModel(DeciLMPreTrainedModel):
|
887 |
+
"""
|
888 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
|
889 |
+
|
890 |
+
Args:
|
891 |
+
config: DeciLMConfig
|
892 |
+
"""
|
893 |
+
|
894 |
+
def __init__(self, config: DeciLMConfig):
|
895 |
+
super().__init__(config)
|
896 |
+
self.padding_idx = config.pad_token_id
|
897 |
+
self.vocab_size = config.vocab_size
|
898 |
+
|
899 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
900 |
+
self.layers = nn.ModuleList(
|
901 |
+
[DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
902 |
+
)
|
903 |
+
self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
904 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=config)
|
905 |
+
self.gradient_checkpointing = False
|
906 |
+
|
907 |
+
# Initialize weights and apply final processing
|
908 |
+
self.post_init()
|
909 |
+
|
910 |
+
def get_input_embeddings(self):
|
911 |
+
return self.embed_tokens
|
912 |
+
|
913 |
+
def set_input_embeddings(self, value):
|
914 |
+
self.embed_tokens = value
|
915 |
+
|
916 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
917 |
+
def forward(
|
918 |
+
self,
|
919 |
+
input_ids: torch.LongTensor = None,
|
920 |
+
attention_mask: Optional[torch.Tensor] = None,
|
921 |
+
position_ids: Optional[torch.LongTensor] = None,
|
922 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
923 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
924 |
+
use_cache: Optional[bool] = None,
|
925 |
+
output_attentions: Optional[bool] = None,
|
926 |
+
output_hidden_states: Optional[bool] = None,
|
927 |
+
return_dict: Optional[bool] = None,
|
928 |
+
cache_position: Optional[torch.LongTensor] = None,
|
929 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
930 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
931 |
+
output_hidden_states = (
|
932 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
933 |
+
)
|
934 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
935 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
936 |
+
|
937 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
938 |
+
raise ValueError(
|
939 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
940 |
+
)
|
941 |
+
|
942 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
943 |
+
logger.warning_once(
|
944 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
945 |
+
)
|
946 |
+
use_cache = False
|
947 |
+
|
948 |
+
if inputs_embeds is None:
|
949 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
950 |
+
|
951 |
+
is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache)
|
952 |
+
if is_legacy_cache_format:
|
953 |
+
raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer "
|
954 |
+
"transformers version or use VariableCache explicitly (see import in this file).")
|
955 |
+
|
956 |
+
if cache_position is None:
|
957 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
958 |
+
cache_position = torch.arange(
|
959 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
960 |
+
)
|
961 |
+
if position_ids is None:
|
962 |
+
position_ids = cache_position.unsqueeze(0)
|
963 |
+
|
964 |
+
causal_mask = self._update_causal_mask(
|
965 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
966 |
+
)
|
967 |
+
hidden_states = inputs_embeds
|
968 |
+
|
969 |
+
# create position embeddings to be shared across the decoder layers
|
970 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
971 |
+
|
972 |
+
# decoder layers
|
973 |
+
all_hidden_states = () if output_hidden_states else None
|
974 |
+
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
+
|
977 |
+
for decoder_layer in self.layers:
|
978 |
+
if output_hidden_states:
|
979 |
+
all_hidden_states += (hidden_states,)
|
980 |
+
|
981 |
+
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
984 |
+
hidden_states,
|
985 |
+
causal_mask,
|
986 |
+
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
+
use_cache,
|
990 |
+
cache_position,
|
991 |
+
position_embeddings,
|
992 |
+
)
|
993 |
+
else:
|
994 |
+
layer_outputs = decoder_layer(
|
995 |
+
hidden_states,
|
996 |
+
attention_mask=causal_mask,
|
997 |
+
position_ids=position_ids,
|
998 |
+
past_key_value=past_key_values,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
use_cache=use_cache,
|
1001 |
+
cache_position=cache_position,
|
1002 |
+
position_embeddings=position_embeddings,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
hidden_states = layer_outputs[0]
|
1006 |
+
|
1007 |
+
if use_cache:
|
1008 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1009 |
+
|
1010 |
+
if output_attentions:
|
1011 |
+
all_self_attns += (layer_outputs[1],)
|
1012 |
+
|
1013 |
+
hidden_states = self.norm(hidden_states)
|
1014 |
+
|
1015 |
+
# add hidden states from the last decoder layer
|
1016 |
+
if output_hidden_states:
|
1017 |
+
all_hidden_states += (hidden_states,)
|
1018 |
+
|
1019 |
+
next_cache = next_decoder_cache if use_cache else None
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1023 |
+
return BaseModelOutputWithPast(
|
1024 |
+
last_hidden_state=hidden_states,
|
1025 |
+
past_key_values=next_cache,
|
1026 |
+
hidden_states=all_hidden_states,
|
1027 |
+
attentions=all_self_attns,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
def _update_causal_mask(
|
1031 |
+
self,
|
1032 |
+
attention_mask: torch.Tensor,
|
1033 |
+
input_tensor: torch.Tensor,
|
1034 |
+
cache_position: torch.Tensor,
|
1035 |
+
past_key_values: Cache,
|
1036 |
+
output_attentions: bool,
|
1037 |
+
):
|
1038 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1039 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1040 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1041 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1042 |
+
|
1043 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1044 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1045 |
+
return attention_mask
|
1046 |
+
return None
|
1047 |
+
|
1048 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1049 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1050 |
+
# to infer the attention mask.
|
1051 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1052 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1053 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1054 |
+
|
1055 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1056 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1057 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1058 |
+
attention_mask,
|
1059 |
+
inputs_embeds=input_tensor,
|
1060 |
+
past_key_values_length=past_seen_tokens,
|
1061 |
+
is_training=self.training,
|
1062 |
+
) and all([not layer.is_sliding for layer in self.layers]):
|
1063 |
+
return None
|
1064 |
+
|
1065 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1066 |
+
min_dtype = torch.finfo(dtype).min
|
1067 |
+
sequence_length = input_tensor.shape[1]
|
1068 |
+
if using_static_cache:
|
1069 |
+
target_length = past_key_values.get_max_length()
|
1070 |
+
else:
|
1071 |
+
target_length = (
|
1072 |
+
attention_mask.shape[-1]
|
1073 |
+
if isinstance(attention_mask, torch.Tensor)
|
1074 |
+
else past_seen_tokens + sequence_length + 1
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1078 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1079 |
+
attention_mask,
|
1080 |
+
sequence_length=sequence_length,
|
1081 |
+
target_length=target_length,
|
1082 |
+
dtype=dtype,
|
1083 |
+
device=device,
|
1084 |
+
min_dtype=min_dtype,
|
1085 |
+
cache_position=cache_position,
|
1086 |
+
batch_size=input_tensor.shape[0],
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
if (
|
1090 |
+
self.config._attn_implementation == "sdpa"
|
1091 |
+
and attention_mask is not None
|
1092 |
+
and attention_mask.device.type == "cuda"
|
1093 |
+
and not output_attentions
|
1094 |
+
):
|
1095 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1096 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1097 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1098 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1099 |
+
|
1100 |
+
return causal_mask
|
1101 |
+
|
1102 |
+
|
1103 |
+
class DeciLMForCausalLM(DeciLMPreTrainedModel, GenerationMixin):
|
1104 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1105 |
+
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__(config)
|
1108 |
+
self.model = DeciLMModel(config)
|
1109 |
+
self.vocab_size = config.vocab_size
|
1110 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1111 |
+
|
1112 |
+
# Initialize weights and apply final processing
|
1113 |
+
self.post_init()
|
1114 |
+
|
1115 |
+
def get_input_embeddings(self):
|
1116 |
+
return self.model.embed_tokens
|
1117 |
+
|
1118 |
+
def set_input_embeddings(self, value):
|
1119 |
+
self.model.embed_tokens = value
|
1120 |
+
|
1121 |
+
def get_output_embeddings(self):
|
1122 |
+
return self.lm_head
|
1123 |
+
|
1124 |
+
def set_output_embeddings(self, new_embeddings):
|
1125 |
+
self.lm_head = new_embeddings
|
1126 |
+
|
1127 |
+
def set_decoder(self, decoder):
|
1128 |
+
self.model = decoder
|
1129 |
+
|
1130 |
+
def get_decoder(self):
|
1131 |
+
return self.model
|
1132 |
+
|
1133 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1134 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1135 |
+
def forward(
|
1136 |
+
self,
|
1137 |
+
input_ids: torch.LongTensor = None,
|
1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1139 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1140 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1141 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1142 |
+
labels: Optional[torch.LongTensor] = None,
|
1143 |
+
use_cache: Optional[bool] = None,
|
1144 |
+
output_attentions: Optional[bool] = None,
|
1145 |
+
output_hidden_states: Optional[bool] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1148 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1149 |
+
r"""
|
1150 |
+
Args:
|
1151 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1152 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1153 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1154 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1155 |
+
|
1156 |
+
Return:
|
1157 |
+
"""
|
1158 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1159 |
+
output_hidden_states = (
|
1160 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1161 |
+
)
|
1162 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1163 |
+
|
1164 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1165 |
+
outputs = self.model(
|
1166 |
+
input_ids=input_ids,
|
1167 |
+
attention_mask=attention_mask,
|
1168 |
+
position_ids=position_ids,
|
1169 |
+
past_key_values=past_key_values,
|
1170 |
+
inputs_embeds=inputs_embeds,
|
1171 |
+
use_cache=use_cache,
|
1172 |
+
output_attentions=output_attentions,
|
1173 |
+
output_hidden_states=output_hidden_states,
|
1174 |
+
return_dict=return_dict,
|
1175 |
+
cache_position=cache_position,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
hidden_states = outputs[0]
|
1179 |
+
if self.config.pretraining_tp > 1:
|
1180 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1181 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1182 |
+
logits = torch.cat(logits, dim=-1)
|
1183 |
+
else:
|
1184 |
+
logits = self.lm_head(hidden_states)
|
1185 |
+
logits = logits.float()
|
1186 |
+
|
1187 |
+
loss = None
|
1188 |
+
if labels is not None:
|
1189 |
+
# Shift so that tokens < n predict n
|
1190 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1191 |
+
shift_labels = labels[..., 1:].contiguous()
|
1192 |
+
# Flatten the tokens
|
1193 |
+
loss_fct = CrossEntropyLoss()
|
1194 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1195 |
+
shift_labels = shift_labels.view(-1)
|
1196 |
+
# Enable model parallelism
|
1197 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1198 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1199 |
+
|
1200 |
+
if not return_dict:
|
1201 |
+
output = (logits,) + outputs[1:]
|
1202 |
+
return (loss,) + output if loss is not None else output
|
1203 |
+
|
1204 |
+
return CausalLMOutputWithPast(
|
1205 |
+
loss=loss,
|
1206 |
+
logits=logits,
|
1207 |
+
past_key_values=outputs.past_key_values,
|
1208 |
+
hidden_states=outputs.hidden_states,
|
1209 |
+
attentions=outputs.attentions,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def prepare_inputs_for_generation(
|
1213 |
+
self,
|
1214 |
+
input_ids,
|
1215 |
+
past_key_values=None,
|
1216 |
+
attention_mask=None,
|
1217 |
+
inputs_embeds=None,
|
1218 |
+
cache_position=None,
|
1219 |
+
position_ids=None,
|
1220 |
+
use_cache=True,
|
1221 |
+
**kwargs,
|
1222 |
+
):
|
1223 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1224 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1225 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1226 |
+
if past_key_values is not None:
|
1227 |
+
if inputs_embeds is not None: # Exception 1
|
1228 |
+
input_ids = input_ids[:, -cache_position.shape[0]:]
|
1229 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1230 |
+
input_ids = input_ids[:, cache_position]
|
1231 |
+
|
1232 |
+
if attention_mask is not None and position_ids is None:
|
1233 |
+
# create position_ids on the fly for batch generation
|
1234 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1235 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1236 |
+
if past_key_values:
|
1237 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1238 |
+
|
1239 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1240 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1241 |
+
|
1242 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1243 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1244 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1245 |
+
else:
|
1246 |
+
# The clone here is for the same reason as for `position_ids`.
|
1247 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1248 |
+
|
1249 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1250 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1251 |
+
if model_inputs["inputs_embeds"] is not None:
|
1252 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1253 |
+
device = model_inputs["inputs_embeds"].device
|
1254 |
+
else:
|
1255 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1256 |
+
device = model_inputs["input_ids"].device
|
1257 |
+
|
1258 |
+
dtype = self.lm_head.weight.dtype
|
1259 |
+
min_dtype = torch.finfo(dtype).min
|
1260 |
+
|
1261 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1262 |
+
attention_mask,
|
1263 |
+
sequence_length=sequence_length,
|
1264 |
+
target_length=past_key_values.get_max_length(),
|
1265 |
+
dtype=dtype,
|
1266 |
+
device=device,
|
1267 |
+
min_dtype=min_dtype,
|
1268 |
+
cache_position=cache_position,
|
1269 |
+
batch_size=batch_size,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
model_inputs.update(
|
1273 |
+
{
|
1274 |
+
"position_ids": position_ids,
|
1275 |
+
"cache_position": cache_position,
|
1276 |
+
"past_key_values": past_key_values,
|
1277 |
+
"use_cache": use_cache,
|
1278 |
+
"attention_mask": attention_mask,
|
1279 |
+
}
|
1280 |
+
)
|
1281 |
+
return model_inputs
|
1282 |
+
|
1283 |
+
def _maybe_initialize_input_ids_for_generation(
|
1284 |
+
self,
|
1285 |
+
inputs: Optional[torch.Tensor] = None,
|
1286 |
+
bos_token_id: Optional[torch.Tensor] = None,
|
1287 |
+
model_kwargs: Optional[dict[str, torch.Tensor]] = None,
|
1288 |
+
) -> torch.LongTensor:
|
1289 |
+
"""
|
1290 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1291 |
+
"""
|
1292 |
+
input_ids = super()._maybe_initialize_input_ids_for_generation(
|
1293 |
+
inputs=inputs, bos_token_id=bos_token_id, model_kwargs=model_kwargs)
|
1294 |
+
if (
|
1295 |
+
"inputs_embeds" in model_kwargs
|
1296 |
+
and input_ids is not None
|
1297 |
+
and input_ids.shape[1] == 0
|
1298 |
+
):
|
1299 |
+
batch_size, input_sequence_length = model_kwargs["inputs_embeds"].shape[:2]
|
1300 |
+
input_ids = torch.zeros((batch_size, input_sequence_length), dtype=torch.long, device=self.device)
|
1301 |
+
return input_ids
|
1302 |
+
|
1303 |
+
def generate(
|
1304 |
+
self,
|
1305 |
+
inputs: Optional[torch.Tensor] = None,
|
1306 |
+
*args,
|
1307 |
+
**kwargs,
|
1308 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
1309 |
+
"""
|
1310 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1311 |
+
"""
|
1312 |
+
only_passed_inputs_embeds = (
|
1313 |
+
"inputs_embeds" in kwargs and
|
1314 |
+
"input_ids" not in kwargs and
|
1315 |
+
inputs is None
|
1316 |
+
)
|
1317 |
+
if only_passed_inputs_embeds:
|
1318 |
+
input_sequence_length = kwargs["inputs_embeds"].shape[1]
|
1319 |
+
|
1320 |
+
generation_output = super().generate(inputs=inputs, *args, **kwargs)
|
1321 |
+
|
1322 |
+
if only_passed_inputs_embeds and isinstance(generation_output, torch.Tensor):
|
1323 |
+
generation_output = generation_output[:, input_sequence_length:]
|
1324 |
+
|
1325 |
+
return generation_output
|
1326 |
+
|
1327 |
+
|
1328 |
+
@add_start_docstrings(
|
1329 |
+
"""
|
1330 |
+
The DeciLM Model transformer with a sequence classification head on top (linear layer).
|
1331 |
+
|
1332 |
+
[`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1333 |
+
(e.g. GPT-2) do.
|
1334 |
+
|
1335 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1336 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1337 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1338 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1339 |
+
each row of the batch).
|
1340 |
+
""",
|
1341 |
+
DECILM_START_DOCSTRING,
|
1342 |
+
)
|
1343 |
+
class DeciLMForSequenceClassification(DeciLMPreTrainedModel):
|
1344 |
+
def __init__(self, config):
|
1345 |
+
super().__init__(config)
|
1346 |
+
self.num_labels = config.num_labels
|
1347 |
+
self.model = DeciLMModel(config)
|
1348 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1349 |
+
|
1350 |
+
# Initialize weights and apply final processing
|
1351 |
+
self.post_init()
|
1352 |
+
|
1353 |
+
def get_input_embeddings(self):
|
1354 |
+
return self.model.embed_tokens
|
1355 |
+
|
1356 |
+
def set_input_embeddings(self, value):
|
1357 |
+
self.model.embed_tokens = value
|
1358 |
+
|
1359 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1360 |
+
def forward(
|
1361 |
+
self,
|
1362 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1365 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1366 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1367 |
+
labels: Optional[torch.LongTensor] = None,
|
1368 |
+
use_cache: Optional[bool] = None,
|
1369 |
+
output_attentions: Optional[bool] = None,
|
1370 |
+
output_hidden_states: Optional[bool] = None,
|
1371 |
+
return_dict: Optional[bool] = None,
|
1372 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1373 |
+
r"""
|
1374 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1376 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1377 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
transformer_outputs = self.model(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
position_ids=position_ids,
|
1385 |
+
past_key_values=past_key_values,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
use_cache=use_cache,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
hidden_states = transformer_outputs[0]
|
1393 |
+
logits = self.score(hidden_states)
|
1394 |
+
|
1395 |
+
if input_ids is not None:
|
1396 |
+
batch_size = input_ids.shape[0]
|
1397 |
+
else:
|
1398 |
+
batch_size = inputs_embeds.shape[0]
|
1399 |
+
|
1400 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1401 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1402 |
+
if self.config.pad_token_id is None:
|
1403 |
+
sequence_lengths = -1
|
1404 |
+
else:
|
1405 |
+
if input_ids is not None:
|
1406 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1407 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1408 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1409 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1410 |
+
else:
|
1411 |
+
sequence_lengths = -1
|
1412 |
+
|
1413 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1414 |
+
|
1415 |
+
loss = None
|
1416 |
+
if labels is not None:
|
1417 |
+
labels = labels.to(logits.device)
|
1418 |
+
if self.config.problem_type is None:
|
1419 |
+
if self.num_labels == 1:
|
1420 |
+
self.config.problem_type = "regression"
|
1421 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1422 |
+
self.config.problem_type = "single_label_classification"
|
1423 |
+
else:
|
1424 |
+
self.config.problem_type = "multi_label_classification"
|
1425 |
+
|
1426 |
+
if self.config.problem_type == "regression":
|
1427 |
+
loss_fct = MSELoss()
|
1428 |
+
if self.num_labels == 1:
|
1429 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1430 |
+
else:
|
1431 |
+
loss = loss_fct(pooled_logits, labels)
|
1432 |
+
elif self.config.problem_type == "single_label_classification":
|
1433 |
+
loss_fct = CrossEntropyLoss()
|
1434 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1435 |
+
elif self.config.problem_type == "multi_label_classification":
|
1436 |
+
loss_fct = BCEWithLogitsLoss()
|
1437 |
+
loss = loss_fct(pooled_logits, labels)
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return SequenceClassifierOutputWithPast(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=pooled_logits,
|
1445 |
+
past_key_values=transformer_outputs.past_key_values,
|
1446 |
+
hidden_states=transformer_outputs.hidden_states,
|
1447 |
+
attentions=transformer_outputs.attentions,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
|
1451 |
+
@add_start_docstrings(
|
1452 |
+
"""
|
1453 |
+
The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like
|
1454 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1455 |
+
""",
|
1456 |
+
DECILM_START_DOCSTRING,
|
1457 |
+
)
|
1458 |
+
class DeciLMForQuestionAnswering(DeciLMPreTrainedModel):
|
1459 |
+
base_model_prefix = "transformer"
|
1460 |
+
|
1461 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->DeciLM
|
1462 |
+
def __init__(self, config):
|
1463 |
+
super().__init__(config)
|
1464 |
+
self.transformer = DeciLMModel(config)
|
1465 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1466 |
+
|
1467 |
+
# Initialize weights and apply final processing
|
1468 |
+
self.post_init()
|
1469 |
+
|
1470 |
+
def get_input_embeddings(self):
|
1471 |
+
return self.transformer.embed_tokens
|
1472 |
+
|
1473 |
+
def set_input_embeddings(self, value):
|
1474 |
+
self.transformer.embed_tokens = value
|
1475 |
+
|
1476 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1477 |
+
def forward(
|
1478 |
+
self,
|
1479 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1480 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1481 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1482 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1483 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1484 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1485 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1486 |
+
output_attentions: Optional[bool] = None,
|
1487 |
+
output_hidden_states: Optional[bool] = None,
|
1488 |
+
return_dict: Optional[bool] = None,
|
1489 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1490 |
+
r"""
|
1491 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1492 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1493 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1494 |
+
are not taken into account for computing the loss.
|
1495 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1496 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1497 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1498 |
+
are not taken into account for computing the loss.
|
1499 |
+
"""
|
1500 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1501 |
+
|
1502 |
+
outputs = self.transformer(
|
1503 |
+
input_ids,
|
1504 |
+
attention_mask=attention_mask,
|
1505 |
+
position_ids=position_ids,
|
1506 |
+
past_key_values=past_key_values,
|
1507 |
+
inputs_embeds=inputs_embeds,
|
1508 |
+
output_attentions=output_attentions,
|
1509 |
+
output_hidden_states=output_hidden_states,
|
1510 |
+
return_dict=return_dict,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
sequence_output = outputs[0]
|
1514 |
+
|
1515 |
+
logits = self.qa_outputs(sequence_output)
|
1516 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1517 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1518 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1519 |
+
|
1520 |
+
total_loss = None
|
1521 |
+
if start_positions is not None and end_positions is not None:
|
1522 |
+
# If we are on multi-GPU, split add a dimension
|
1523 |
+
if len(start_positions.size()) > 1:
|
1524 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1525 |
+
if len(end_positions.size()) > 1:
|
1526 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1527 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1528 |
+
ignored_index = start_logits.size(1)
|
1529 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1530 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1531 |
+
|
1532 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1533 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1534 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1535 |
+
total_loss = (start_loss + end_loss) / 2
|
1536 |
+
|
1537 |
+
if not return_dict:
|
1538 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1539 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1540 |
+
|
1541 |
+
return QuestionAnsweringModelOutput(
|
1542 |
+
loss=total_loss,
|
1543 |
+
start_logits=start_logits,
|
1544 |
+
end_logits=end_logits,
|
1545 |
+
hidden_states=outputs.hidden_states,
|
1546 |
+
attentions=outputs.attentions,
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
|
1550 |
+
@add_start_docstrings(
|
1551 |
+
"""
|
1552 |
+
The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1553 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1554 |
+
""",
|
1555 |
+
DECILM_START_DOCSTRING,
|
1556 |
+
)
|
1557 |
+
class DeciLMForTokenClassification(DeciLMPreTrainedModel):
|
1558 |
+
def __init__(self, config):
|
1559 |
+
super().__init__(config)
|
1560 |
+
self.num_labels = config.num_labels
|
1561 |
+
self.model = DeciLMModel(config)
|
1562 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1563 |
+
classifier_dropout = config.classifier_dropout
|
1564 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1565 |
+
classifier_dropout = config.hidden_dropout
|
1566 |
+
else:
|
1567 |
+
classifier_dropout = 0.1
|
1568 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1569 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1570 |
+
|
1571 |
+
# Initialize weights and apply final processing
|
1572 |
+
self.post_init()
|
1573 |
+
|
1574 |
+
def get_input_embeddings(self):
|
1575 |
+
return self.model.embed_tokens
|
1576 |
+
|
1577 |
+
def set_input_embeddings(self, value):
|
1578 |
+
self.model.embed_tokens = value
|
1579 |
+
|
1580 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1581 |
+
def forward(
|
1582 |
+
self,
|
1583 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1584 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1585 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1586 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1587 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1588 |
+
labels: Optional[torch.LongTensor] = None,
|
1589 |
+
use_cache: Optional[bool] = None,
|
1590 |
+
output_attentions: Optional[bool] = None,
|
1591 |
+
output_hidden_states: Optional[bool] = None,
|
1592 |
+
return_dict: Optional[bool] = None,
|
1593 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1594 |
+
r"""
|
1595 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1596 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1597 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1598 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1599 |
+
"""
|
1600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1601 |
+
|
1602 |
+
outputs = self.model(
|
1603 |
+
input_ids,
|
1604 |
+
attention_mask=attention_mask,
|
1605 |
+
position_ids=position_ids,
|
1606 |
+
past_key_values=past_key_values,
|
1607 |
+
inputs_embeds=inputs_embeds,
|
1608 |
+
use_cache=use_cache,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
sequence_output = outputs[0]
|
1614 |
+
sequence_output = self.dropout(sequence_output)
|
1615 |
+
logits = self.score(sequence_output)
|
1616 |
+
|
1617 |
+
loss = None
|
1618 |
+
if labels is not None:
|
1619 |
+
loss_fct = CrossEntropyLoss()
|
1620 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1621 |
+
|
1622 |
+
if not return_dict:
|
1623 |
+
output = (logits,) + outputs[2:]
|
1624 |
+
return ((loss,) + output) if loss is not None else output
|
1625 |
+
|
1626 |
+
return TokenClassifierOutput(
|
1627 |
+
loss=loss,
|
1628 |
+
logits=logits,
|
1629 |
+
hidden_states=outputs.hidden_states,
|
1630 |
+
attentions=outputs.attentions,
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
|
1634 |
+
########################################################################
|
1635 |
+
# DeciLM-specific code
|
1636 |
+
########################################################################
|
1637 |
+
|
1638 |
+
|
1639 |
+
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
1640 |
+
# DeciLM-specific code
|
1641 |
+
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
1642 |
+
return _find_multiple(intermediate_size, 256)
|
1643 |
+
|
1644 |
+
|
1645 |
+
def _find_multiple(n: int, k: int) -> int:
|
1646 |
+
# DeciLM-specific code
|
1647 |
+
if n % k == 0:
|
1648 |
+
return n
|
1649 |
+
return n + k - (n % k)
|
1650 |
+
|
1651 |
+
|
1652 |
+
class DeciLMLinearMLP(nn.Module):
|
1653 |
+
# DeciLM-specific code
|
1654 |
+
def __init__(self,
|
1655 |
+
config: DeciLMConfig,
|
1656 |
+
):
|
1657 |
+
super().__init__()
|
1658 |
+
self.linear_mlp = nn.Linear(in_features=config.hidden_size,
|
1659 |
+
out_features=config.hidden_size,
|
1660 |
+
bias=False)
|
1661 |
+
|
1662 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1663 |
+
return self.linear_mlp.forward(x)
|
1664 |
+
|
1665 |
+
|
1666 |
+
class DeciLMLinearAttention(nn.Module):
|
1667 |
+
# DeciLM-specific code
|
1668 |
+
def __init__(self,
|
1669 |
+
config: DeciLMConfig,
|
1670 |
+
):
|
1671 |
+
super().__init__()
|
1672 |
+
self.linear_attn = nn.Linear(in_features=config.hidden_size,
|
1673 |
+
out_features=config.hidden_size,
|
1674 |
+
bias=False)
|
1675 |
+
|
1676 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1677 |
+
return self.linear_attn.forward(x)
|
1678 |
+
|
1679 |
+
|
1680 |
+
def sparsity_backward_hook(*args, **kwargs):
|
1681 |
+
raise NotImplementedError("No support for sparsity when training HF DeciLM (inference is ok though)")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2062 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"clean_up_tokenization_spaces": true,
|
2054 |
+
"eos_token": "<|eot_id|>",
|
2055 |
+
"extra_special_tokens": {},
|
2056 |
+
"model_input_names": [
|
2057 |
+
"input_ids",
|
2058 |
+
"attention_mask"
|
2059 |
+
],
|
2060 |
+
"model_max_length": 131072,
|
2061 |
+
"tokenizer_class": "PreTrainedTokenizer"
|
2062 |
+
}
|