--- license: apache-2.0 tags: - gemma - gguf - quantized inference: false --- GGUF-IQ-Imatrix quants for [YeungNLP/firefly-gemma-7b](https://huggingface.co/YeungNLP/firefly-gemma-7b): **This isn't a roleplay model. Read card information for applications.** ```python quantization_options = [ "IQ2_XXS", "IQ2_XS", "IQ2_S", "IQ2_M", "Q3_K_M", "Q4_K_M", "Q4_K_S", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K", "Q8_0", "IQ3_M", "IQ3_S", "IQ3_XXS" ] ``` [Requested by Cran-May.](https://huggingface.co/Lewdiculous/Model-Requests/discussions/8) **Model card image:** ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/SrOekTxdpnxHyWWmMiAvc.jpeg) ## Model Card for Firefly-Gemma: [firefly-gemma-7b](https://huggingface.co/YeungNLP/firefly-gemma-7b) is trained based on [gemma-7b](https://huggingface.co/google/gemma-7b) to act as a helpful and harmless AI assistant. We use [Firefly](https://github.com/yangjianxin1/Firefly) to train the model on **a single V100 GPU** with QLoRA. Our model outperforms the official [gemma-7b-it](https://huggingface.co/google/gemma-7b-it), [zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1), [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) and [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d4cf2693a0a3744a27536c/xeZeemMWs8_NLL-BnjGrN.png) We advise you to install transformers>=4.38.1. ## Performance We evaluate our models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance. | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |--------------------------------|--------|--------|-----------|--------|------------|-----------|--------| | **firefly-gemma-7b** | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 | | zephyr-7b-gemma-v0.1 |62.41|58.45|83.48|60.68|52.07| 74.19| 45.56| | firefly-qwen1.5-en-7b-dpo-v0.1 | 62.36 | 54.35 | 76.04 | 61.21 | 56.4 | 72.06 | 54.13 | | zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 | | firefly-qwen1.5-en-7b | 61.44 | 53.41 | 75.51 | 61.67 |51.96 |70.72 | 55.34 | | vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 | | Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 | | Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 | | gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 | ## Usage The chat template of our chat models is similar as Official gemma-7b-it: ```text user hello, who are you? model I am a AI program developed by Firefly ``` You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py). You can also use the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name_or_path = "YeungNLP/firefly-gemma-7b" model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto', ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. " text = f""" user {prompt} model """.strip() model_inputs = tokenizer([text], return_tensors="pt").to('cuda') generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1500, top_p = 0.9, temperature = 0.35, repetition_penalty = 1.0, eos_token_id=tokenizer.encode('', add_special_tokens=False) ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```