# How to Use the Advanced Magnus Chess Model from Hugging Face ## Quick Start Guide Once your model is uploaded to Hugging Face, here's how others can use it: ### 1. Installation ```bash pip install huggingface_hub torch chess numpy pyyaml scikit-learn ``` ### 2. Download and Use the Model ```python from huggingface_hub import hf_hub_download import chess import sys import os # Download model files (replace YOUR_USERNAME with your actual username) repo_id = "YOUR_USERNAME/advanced-magnus-chess-model" # Download required files model_path = hf_hub_download(repo_id=repo_id, filename="model.pth") predictor_path = hf_hub_download(repo_id=repo_id, filename="advanced_magnus_predictor.py") config_path = hf_hub_download(repo_id=repo_id, filename="config.yaml") # Add the download directory to Python path download_dir = os.path.dirname(model_path) sys.path.append(download_dir) # Import and use the predictor from advanced_magnus_predictor import AdvancedMagnusPredictor # Initialize the predictor predictor = AdvancedMagnusPredictor() # Analyze a chess position board = chess.Board("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1") predictions = predictor.predict_moves(board, top_k=5) print("Magnus-style move predictions:") for i, pred in enumerate(predictions, 1): move = pred['move'] confidence = pred['confidence'] san = board.san(chess.Move.from_uci(move)) print(f"{i}. {san} ({move}) - {confidence:.3f} confidence") ``` ### 3. Example Output ``` Magnus-style move predictions: 1. c5 (c7c5) - 0.145 confidence 2. e5 (e7e5) - 0.123 confidence 3. Nf6 (g8f6) - 0.098 confidence 4. d6 (d7d6) - 0.087 confidence 5. e6 (e7e6) - 0.075 confidence ``` ## Advanced Usage ### Batch Analysis ```python positions = [ "rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1", "rnbqkbnr/pp1ppppp/8/2p5/4P3/8/PPPP1PPP/RNBQKBNR w KQkq c6 0 2", "rnbqkbnr/ppp1pppp/8/3p4/2PP4/8/PP2PPPP/RNBQKBNR b KQkq c3 0 2" ] for i, fen in enumerate(positions): print(f"\nPosition {i+1}: {fen}") board = chess.Board(fen) predictions = predictor.predict_moves(board, top_k=3) for pred in predictions: san = board.san(chess.Move.from_uci(pred['move'])) print(f" {san}: {pred['confidence']:.3f}") ``` ### Integration with Chess Engines ```python import chess.engine # Combine Magnus predictions with Stockfish analysis stockfish = chess.engine.SimpleEngine.popen_uci("/path/to/stockfish") board = chess.Board("your_position_fen") # Get Magnus-style predictions magnus_predictions = predictor.predict_moves(board, top_k=5) # Get engine analysis engine_result = stockfish.play(board, chess.engine.Limit(time=1.0)) engine_move = engine_result.move.uci() print("Magnus predictions vs Engine:") for pred in magnus_predictions: move = pred['move'] san = board.san(chess.Move.from_uci(move)) marker = " ⭐" if move == engine_move else "" print(f" {san}: {pred['confidence']:.3f}{marker}") stockfish.quit() ``` ## Model Features - **Style Emulation**: Predicts moves in Magnus Carlsen's characteristic style - **High Accuracy**: 6.65% exact match, 14.17% top-5 accuracy - **Fast Inference**: ~50ms per position - **Comprehensive**: Handles all chess positions and game phases - **Educational**: Perfect for learning Magnus's strategic concepts ## Use Cases 1. **Chess Training**: Learn Magnus's move preferences 2. **Game Analysis**: Understand Magnus-style thinking 3. **AI Development**: Building chess applications 4. **Research**: Studying player-specific chess styles 5. **Educational Tools**: Teaching advanced chess concepts ## Technical Notes - Model requires position feature extraction - Works best with properly formatted FEN strings - Optimized for modern hardware (GPU/MPS supported) - Compatible with standard chess libraries ## Support For issues or questions about using the model, please check the model repository on Hugging Face or create an issue in the original project repository. ## Citation ```bibtex @misc{advanced_magnus_chess_model_2025, title={Advanced Magnus Carlsen Chess Model}, author={Chess AI Research Team}, year={2025}, url={https://huggingface.co/YOUR_USERNAME/advanced-magnus-chess-model} } ```