Leo1212 commited on
Commit
536da8a
·
verified ·
1 Parent(s): 7b00ba0

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: ntu-spml/distilhubert
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - marsyas/gtzan
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: distilhubert-finetuned-gtzan
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: GTZAN
19
+ type: marsyas/gtzan
20
+ config: all
21
+ split: train
22
+ args: all
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.83
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # distilhubert-finetuned-gtzan
33
+
34
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.6581
37
+ - Accuracy: 0.83
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 5e-05
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 16
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.1424 | 1.0 | 57 | 2.0456 | 0.45 |
71
+ | 1.5766 | 2.0 | 114 | 1.5045 | 0.68 |
72
+ | 1.2474 | 3.0 | 171 | 1.2068 | 0.68 |
73
+ | 0.9574 | 4.0 | 228 | 1.1053 | 0.67 |
74
+ | 0.8741 | 5.0 | 285 | 0.8743 | 0.78 |
75
+ | 0.721 | 6.0 | 342 | 0.8041 | 0.77 |
76
+ | 0.6497 | 7.0 | 399 | 0.7521 | 0.81 |
77
+ | 0.5037 | 8.0 | 456 | 0.7051 | 0.82 |
78
+ | 0.5083 | 9.0 | 513 | 0.6693 | 0.82 |
79
+ | 0.4939 | 10.0 | 570 | 0.6581 | 0.83 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.45.1
85
+ - Pytorch 2.4.1+cu121
86
+ - Datasets 3.0.1
87
+ - Tokenizers 0.20.0