Lemswasabi
commited on
Commit
•
4688492
1
Parent(s):
8835b02
add model without lm
Browse files- README.md +119 -0
- added_tokens.json +1 -0
- all_results.json +14 -0
- config.json +115 -0
- eval_results.json +9 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +37 -0
- run_speech_recognition_ctc.py +780 -0
- runs/May21_09-02-48_bioman2/1653117325.7043028/events.out.tfevents.1653117325.bioman2.19214.1 +3 -0
- runs/May21_09-02-48_bioman2/events.out.tfevents.1653117325.bioman2.19214.0 +3 -0
- runs/May21_09-02-48_bioman2/events.out.tfevents.1653250459.bioman2.19214.2 +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +8 -0
- trainer_state.json +2221 -0
- training_args.bin +3 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- automatic-speech-recognition
|
4 |
+
- Lemswasabi/tuudle
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- tuudle
|
8 |
+
model-index:
|
9 |
+
- name: ''
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
#
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [Lemswasabi/letzspeak](https://huggingface.co/Lemswasabi/letzspeak) on the LEMSWASABI/TUUDLE - RTL dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1058
|
21 |
+
- Wer: 0.1075
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 7.5e-05
|
41 |
+
- train_batch_size: 3
|
42 |
+
- eval_batch_size: 3
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 12
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 2000
|
49 |
+
- num_epochs: 50.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
56 |
+
| 3.1484 | 0.89 | 500 | 3.0844 | 1.0 |
|
57 |
+
| 2.6539 | 1.77 | 1000 | 1.7272 | 0.9358 |
|
58 |
+
| 0.8732 | 2.66 | 1500 | 0.1975 | 0.1609 |
|
59 |
+
| 0.8075 | 3.55 | 2000 | 0.1483 | 0.1468 |
|
60 |
+
| 0.7358 | 4.43 | 2500 | 0.1331 | 0.1401 |
|
61 |
+
| 0.7079 | 5.32 | 3000 | 0.1273 | 0.1364 |
|
62 |
+
| 0.7032 | 6.21 | 3500 | 0.1133 | 0.1240 |
|
63 |
+
| 0.7129 | 7.09 | 4000 | 0.1124 | 0.1290 |
|
64 |
+
| 0.6771 | 7.98 | 4500 | 0.1121 | 0.1300 |
|
65 |
+
| 0.6859 | 8.86 | 5000 | 0.1095 | 0.1313 |
|
66 |
+
| 0.6496 | 9.75 | 5500 | 0.1091 | 0.1250 |
|
67 |
+
| 0.6431 | 10.64 | 6000 | 0.1102 | 0.1293 |
|
68 |
+
| 0.6422 | 11.52 | 6500 | 0.1107 | 0.1179 |
|
69 |
+
| 0.6334 | 12.41 | 7000 | 0.1049 | 0.1236 |
|
70 |
+
| 0.599 | 13.3 | 7500 | 0.1092 | 0.1152 |
|
71 |
+
| 0.6205 | 14.18 | 8000 | 0.1047 | 0.1219 |
|
72 |
+
| 0.5944 | 15.07 | 8500 | 0.1068 | 0.1203 |
|
73 |
+
| 0.6102 | 15.96 | 9000 | 0.1056 | 0.1159 |
|
74 |
+
| 0.5983 | 16.84 | 9500 | 0.1061 | 0.1152 |
|
75 |
+
| 0.5882 | 17.73 | 10000 | 0.1043 | 0.1135 |
|
76 |
+
| 0.5876 | 18.62 | 10500 | 0.1023 | 0.1159 |
|
77 |
+
| 0.5717 | 19.5 | 11000 | 0.1037 | 0.1233 |
|
78 |
+
| 0.5537 | 20.39 | 11500 | 0.1070 | 0.1192 |
|
79 |
+
| 0.5636 | 21.28 | 12000 | 0.1036 | 0.1169 |
|
80 |
+
| 0.5536 | 22.16 | 12500 | 0.1008 | 0.1182 |
|
81 |
+
| 0.5656 | 23.05 | 13000 | 0.1010 | 0.1172 |
|
82 |
+
| 0.5504 | 23.94 | 13500 | 0.1019 | 0.1105 |
|
83 |
+
| 0.5476 | 24.82 | 14000 | 0.1026 | 0.1166 |
|
84 |
+
| 0.5375 | 25.71 | 14500 | 0.1107 | 0.1189 |
|
85 |
+
| 0.5318 | 26.6 | 15000 | 0.1051 | 0.1142 |
|
86 |
+
| 0.5278 | 27.48 | 15500 | 0.1049 | 0.1166 |
|
87 |
+
| 0.5204 | 28.37 | 16000 | 0.1081 | 0.1182 |
|
88 |
+
| 0.512 | 29.26 | 16500 | 0.1062 | 0.1156 |
|
89 |
+
| 0.5082 | 30.14 | 17000 | 0.1045 | 0.1135 |
|
90 |
+
| 0.5193 | 31.03 | 17500 | 0.1091 | 0.1145 |
|
91 |
+
| 0.5129 | 31.91 | 18000 | 0.1040 | 0.1088 |
|
92 |
+
| 0.5126 | 32.8 | 18500 | 0.1085 | 0.1169 |
|
93 |
+
| 0.496 | 33.69 | 19000 | 0.1070 | 0.1166 |
|
94 |
+
| 0.5017 | 34.57 | 19500 | 0.1119 | 0.1162 |
|
95 |
+
| 0.4808 | 35.46 | 20000 | 0.1101 | 0.1139 |
|
96 |
+
| 0.4939 | 36.35 | 20500 | 0.1081 | 0.1125 |
|
97 |
+
| 0.4738 | 37.23 | 21000 | 0.1091 | 0.1098 |
|
98 |
+
| 0.4978 | 38.12 | 21500 | 0.1057 | 0.1092 |
|
99 |
+
| 0.4972 | 39.01 | 22000 | 0.1074 | 0.1105 |
|
100 |
+
| 0.4773 | 39.89 | 22500 | 0.1062 | 0.1108 |
|
101 |
+
| 0.4741 | 40.78 | 23000 | 0.1057 | 0.1085 |
|
102 |
+
| 0.4776 | 41.67 | 23500 | 0.1077 | 0.1085 |
|
103 |
+
| 0.4637 | 42.55 | 24000 | 0.1061 | 0.1095 |
|
104 |
+
| 0.4853 | 43.44 | 24500 | 0.1081 | 0.1075 |
|
105 |
+
| 0.4602 | 44.33 | 25000 | 0.1076 | 0.1085 |
|
106 |
+
| 0.4667 | 45.21 | 25500 | 0.1078 | 0.1078 |
|
107 |
+
| 0.4484 | 46.1 | 26000 | 0.1056 | 0.1082 |
|
108 |
+
| 0.4601 | 46.99 | 26500 | 0.1066 | 0.1078 |
|
109 |
+
| 0.4691 | 47.87 | 27000 | 0.1068 | 0.1085 |
|
110 |
+
| 0.4457 | 48.76 | 27500 | 0.1066 | 0.1078 |
|
111 |
+
| 0.475 | 49.65 | 28000 | 0.1060 | 0.1082 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.20.0.dev0
|
117 |
+
- Pytorch 1.11.0+cu113
|
118 |
+
- Datasets 2.2.1
|
119 |
+
- Tokenizers 0.12.1
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 57, "</s>": 58}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.10580451041460037,
|
4 |
+
"eval_runtime": 31.0996,
|
5 |
+
"eval_samples": 178,
|
6 |
+
"eval_samples_per_second": 5.724,
|
7 |
+
"eval_steps_per_second": 1.929,
|
8 |
+
"eval_wer": 0.10749076251259658,
|
9 |
+
"train_loss": 0.6889870901987062,
|
10 |
+
"train_runtime": 132713.9902,
|
11 |
+
"train_samples": 6770,
|
12 |
+
"train_samples_per_second": 2.551,
|
13 |
+
"train_steps_per_second": 0.212
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Lemswasabi/letzspeak",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_channel_length": 10,
|
63 |
+
"mask_channel_min_space": 1,
|
64 |
+
"mask_channel_other": 0.0,
|
65 |
+
"mask_channel_prob": 0.0,
|
66 |
+
"mask_channel_selection": "static",
|
67 |
+
"mask_feature_length": 64,
|
68 |
+
"mask_feature_min_masks": 0,
|
69 |
+
"mask_feature_prob": 0.25,
|
70 |
+
"mask_time_length": 10,
|
71 |
+
"mask_time_min_masks": 2,
|
72 |
+
"mask_time_min_space": 1,
|
73 |
+
"mask_time_other": 0.0,
|
74 |
+
"mask_time_prob": 0.75,
|
75 |
+
"mask_time_selection": "static",
|
76 |
+
"model_type": "wav2vec2",
|
77 |
+
"num_adapter_layers": 3,
|
78 |
+
"num_attention_heads": 16,
|
79 |
+
"num_codevector_groups": 2,
|
80 |
+
"num_codevectors_per_group": 320,
|
81 |
+
"num_conv_pos_embedding_groups": 16,
|
82 |
+
"num_conv_pos_embeddings": 128,
|
83 |
+
"num_feat_extract_layers": 7,
|
84 |
+
"num_hidden_layers": 24,
|
85 |
+
"num_negatives": 100,
|
86 |
+
"output_hidden_size": 1024,
|
87 |
+
"pad_token_id": 56,
|
88 |
+
"proj_codevector_dim": 768,
|
89 |
+
"tdnn_dilation": [
|
90 |
+
1,
|
91 |
+
2,
|
92 |
+
3,
|
93 |
+
1,
|
94 |
+
1
|
95 |
+
],
|
96 |
+
"tdnn_dim": [
|
97 |
+
512,
|
98 |
+
512,
|
99 |
+
512,
|
100 |
+
512,
|
101 |
+
1500
|
102 |
+
],
|
103 |
+
"tdnn_kernel": [
|
104 |
+
5,
|
105 |
+
3,
|
106 |
+
3,
|
107 |
+
1,
|
108 |
+
1
|
109 |
+
],
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.20.0.dev0",
|
112 |
+
"use_weighted_layer_sum": false,
|
113 |
+
"vocab_size": 59,
|
114 |
+
"xvector_output_dim": 512
|
115 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"eval_loss": 0.10580451041460037,
|
4 |
+
"eval_runtime": 31.0996,
|
5 |
+
"eval_samples": 178,
|
6 |
+
"eval_samples_per_second": 5.724,
|
7 |
+
"eval_steps_per_second": 1.929,
|
8 |
+
"eval_wer": 0.10749076251259658
|
9 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d35b9085ec4fe5c026ae1207feb043e4df0016d99055a3a68d93bf0255c37980
|
3 |
+
size 1262140593
|
run.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="Lemswasabi/tuudle" \
|
3 |
+
--model_name_or_path="Lemswasabi/letzspeak" \
|
4 |
+
--dataset_config_name="rtl" \
|
5 |
+
--train_split_name="train" \
|
6 |
+
--eval_split_name="validation" \
|
7 |
+
--output_dir="./" \
|
8 |
+
--overwrite_output_dir \
|
9 |
+
--num_train_epochs="50" \
|
10 |
+
--per_device_train_batch_size="3" \
|
11 |
+
--per_device_eval_batch_size="3" \
|
12 |
+
--gradient_accumulation_steps="4" \
|
13 |
+
--learning_rate="7.5e-5" \
|
14 |
+
--warmup_steps="2000" \
|
15 |
+
--length_column_name="input_length" \
|
16 |
+
--evaluation_strategy="steps" \
|
17 |
+
--text_column_name="sentence" \
|
18 |
+
--chars_to_replace \- \
|
19 |
+
--chars_to_ignore , ? . ! \; \: \" “ % ‘ „ ” � — ’ … – \
|
20 |
+
--save_steps="500" \
|
21 |
+
--eval_steps="500" \
|
22 |
+
--logging_steps="100" \
|
23 |
+
--layerdrop="0.0" \
|
24 |
+
--activation_dropout="0.1" \
|
25 |
+
--save_total_limit="3" \
|
26 |
+
--freeze_feature_encoder \
|
27 |
+
--feat_proj_dropout="0.0" \
|
28 |
+
--mask_time_prob="0.75" \
|
29 |
+
--mask_time_length="10" \
|
30 |
+
--mask_feature_prob="0.25" \
|
31 |
+
--mask_feature_length="64" \
|
32 |
+
--gradient_checkpointing \
|
33 |
+
--use_auth_token \
|
34 |
+
--fp16 \
|
35 |
+
--group_by_length \
|
36 |
+
--do_train --do_eval \
|
37 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.20.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": (
|
105 |
+
"Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
106 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
107 |
+
"vectors will be masked along the time axis."
|
108 |
+
)
|
109 |
+
},
|
110 |
+
)
|
111 |
+
mask_time_length: int = field(
|
112 |
+
default=10,
|
113 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
114 |
+
)
|
115 |
+
mask_feature_prob: float = field(
|
116 |
+
default=0.0,
|
117 |
+
metadata={
|
118 |
+
"help": (
|
119 |
+
"Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
|
120 |
+
" to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
|
121 |
+
" bins will be masked along the time axis."
|
122 |
+
)
|
123 |
+
},
|
124 |
+
)
|
125 |
+
mask_feature_length: int = field(
|
126 |
+
default=10,
|
127 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
128 |
+
)
|
129 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
130 |
+
ctc_loss_reduction: Optional[str] = field(
|
131 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
@dataclass
|
136 |
+
class DataTrainingArguments:
|
137 |
+
"""
|
138 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
139 |
+
|
140 |
+
Using `HfArgumentParser` we can turn this class
|
141 |
+
into argparse arguments to be able to specify them on
|
142 |
+
the command line.
|
143 |
+
"""
|
144 |
+
|
145 |
+
dataset_name: str = field(
|
146 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
147 |
+
)
|
148 |
+
dataset_config_name: str = field(
|
149 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
150 |
+
)
|
151 |
+
train_split_name: str = field(
|
152 |
+
default="train+validation",
|
153 |
+
metadata={
|
154 |
+
"help": (
|
155 |
+
"The name of the training data set split to use (via the datasets library). Defaults to "
|
156 |
+
"'train+validation'"
|
157 |
+
)
|
158 |
+
},
|
159 |
+
)
|
160 |
+
eval_split_name: str = field(
|
161 |
+
default="test",
|
162 |
+
metadata={
|
163 |
+
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
164 |
+
},
|
165 |
+
)
|
166 |
+
audio_column_name: str = field(
|
167 |
+
default="audio",
|
168 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
169 |
+
)
|
170 |
+
text_column_name: str = field(
|
171 |
+
default="text",
|
172 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
173 |
+
)
|
174 |
+
overwrite_cache: bool = field(
|
175 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
176 |
+
)
|
177 |
+
preprocessing_num_workers: Optional[int] = field(
|
178 |
+
default=None,
|
179 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
180 |
+
)
|
181 |
+
max_train_samples: Optional[int] = field(
|
182 |
+
default=None,
|
183 |
+
metadata={
|
184 |
+
"help": (
|
185 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
186 |
+
"value if set."
|
187 |
+
)
|
188 |
+
},
|
189 |
+
)
|
190 |
+
max_eval_samples: Optional[int] = field(
|
191 |
+
default=None,
|
192 |
+
metadata={
|
193 |
+
"help": (
|
194 |
+
"For debugging purposes or quicker training, truncate the number of validation examples to this "
|
195 |
+
"value if set."
|
196 |
+
)
|
197 |
+
},
|
198 |
+
)
|
199 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
200 |
+
default=None,
|
201 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
202 |
+
)
|
203 |
+
chars_to_replace: Optional[List[str]] = list_field(
|
204 |
+
default=None,
|
205 |
+
metadata={"help": "A list of characters to replace from the transcripts."},
|
206 |
+
)
|
207 |
+
eval_metrics: List[str] = list_field(
|
208 |
+
default=["wer"],
|
209 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
210 |
+
)
|
211 |
+
max_duration_in_seconds: float = field(
|
212 |
+
default=20.0,
|
213 |
+
metadata={
|
214 |
+
"help": (
|
215 |
+
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
|
216 |
+
" 'max_duration_in_seconds`"
|
217 |
+
)
|
218 |
+
},
|
219 |
+
)
|
220 |
+
min_duration_in_seconds: float = field(
|
221 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
222 |
+
)
|
223 |
+
preprocessing_only: bool = field(
|
224 |
+
default=False,
|
225 |
+
metadata={
|
226 |
+
"help": (
|
227 |
+
"Whether to only do data preprocessing and skip training. This is especially useful when data"
|
228 |
+
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
|
229 |
+
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
|
230 |
+
" can consequently be loaded in distributed training"
|
231 |
+
)
|
232 |
+
},
|
233 |
+
)
|
234 |
+
use_auth_token: bool = field(
|
235 |
+
default=False,
|
236 |
+
metadata={
|
237 |
+
"help": (
|
238 |
+
"If :obj:`True`, will use the token generated when running"
|
239 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
240 |
+
)
|
241 |
+
},
|
242 |
+
)
|
243 |
+
unk_token: str = field(
|
244 |
+
default="[UNK]",
|
245 |
+
metadata={"help": "The unk token for the tokenizer"},
|
246 |
+
)
|
247 |
+
pad_token: str = field(
|
248 |
+
default="[PAD]",
|
249 |
+
metadata={"help": "The padding token for the tokenizer"},
|
250 |
+
)
|
251 |
+
word_delimiter_token: str = field(
|
252 |
+
default="|",
|
253 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
254 |
+
)
|
255 |
+
phoneme_language: Optional[str] = field(
|
256 |
+
default=None,
|
257 |
+
metadata={
|
258 |
+
"help": (
|
259 |
+
"The target language that should be used be"
|
260 |
+
" passed to the tokenizer for tokenization. Note that"
|
261 |
+
" this is only relevant if the model classifies the"
|
262 |
+
" input audio to a sequence of phoneme sequences."
|
263 |
+
)
|
264 |
+
},
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
@dataclass
|
269 |
+
class DataCollatorCTCWithPadding:
|
270 |
+
"""
|
271 |
+
Data collator that will dynamically pad the inputs received.
|
272 |
+
Args:
|
273 |
+
processor (:class:`~transformers.AutoProcessor`)
|
274 |
+
The processor used for proccessing the data.
|
275 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
276 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
277 |
+
among:
|
278 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
279 |
+
sequence if provided).
|
280 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
281 |
+
maximum acceptable input length for the model if that argument is not provided.
|
282 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
283 |
+
different lengths).
|
284 |
+
max_length (:obj:`int`, `optional`):
|
285 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
286 |
+
max_length_labels (:obj:`int`, `optional`):
|
287 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
288 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
289 |
+
If set will pad the sequence to a multiple of the provided value.
|
290 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
291 |
+
7.5 (Volta).
|
292 |
+
"""
|
293 |
+
|
294 |
+
processor: AutoProcessor
|
295 |
+
padding: Union[bool, str] = "longest"
|
296 |
+
pad_to_multiple_of: Optional[int] = None
|
297 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
298 |
+
|
299 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
300 |
+
# split inputs and labels since they have to be of different lenghts and need
|
301 |
+
# different padding methods
|
302 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
303 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
304 |
+
|
305 |
+
batch = self.processor.pad(
|
306 |
+
input_features,
|
307 |
+
padding=self.padding,
|
308 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
309 |
+
return_tensors="pt",
|
310 |
+
)
|
311 |
+
|
312 |
+
with self.processor.as_target_processor():
|
313 |
+
labels_batch = self.processor.pad(
|
314 |
+
label_features,
|
315 |
+
padding=self.padding,
|
316 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
317 |
+
return_tensors="pt",
|
318 |
+
)
|
319 |
+
|
320 |
+
# replace padding with -100 to ignore loss correctly
|
321 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
322 |
+
|
323 |
+
batch["labels"] = labels
|
324 |
+
|
325 |
+
return batch
|
326 |
+
|
327 |
+
|
328 |
+
def create_vocabulary_from_data(
|
329 |
+
datasets: DatasetDict,
|
330 |
+
word_delimiter_token: Optional[str] = None,
|
331 |
+
unk_token: Optional[str] = None,
|
332 |
+
pad_token: Optional[str] = None,
|
333 |
+
):
|
334 |
+
# Given training and test labels create vocabulary
|
335 |
+
def extract_all_chars(batch):
|
336 |
+
all_text = " ".join(batch["target_text"])
|
337 |
+
vocab = list(set(all_text))
|
338 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
339 |
+
|
340 |
+
vocabs = datasets.map(
|
341 |
+
extract_all_chars,
|
342 |
+
batched=True,
|
343 |
+
batch_size=-1,
|
344 |
+
keep_in_memory=True,
|
345 |
+
remove_columns=datasets["train"].column_names,
|
346 |
+
)
|
347 |
+
|
348 |
+
# take union of all unique characters in each dataset
|
349 |
+
vocab_set = functools.reduce(
|
350 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
351 |
+
)
|
352 |
+
|
353 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
354 |
+
|
355 |
+
# replace white space with delimiter token
|
356 |
+
if word_delimiter_token is not None:
|
357 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
358 |
+
del vocab_dict[" "]
|
359 |
+
|
360 |
+
# add unk and pad token
|
361 |
+
if unk_token is not None:
|
362 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
363 |
+
|
364 |
+
if pad_token is not None:
|
365 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
366 |
+
|
367 |
+
return vocab_dict
|
368 |
+
|
369 |
+
|
370 |
+
def main():
|
371 |
+
# See all possible arguments in src/transformers/training_args.py
|
372 |
+
# or by passing the --help flag to this script.
|
373 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
374 |
+
|
375 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
376 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
377 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
378 |
+
# let's parse it to get our arguments.
|
379 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
380 |
+
else:
|
381 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
382 |
+
|
383 |
+
# Detecting last checkpoint.
|
384 |
+
last_checkpoint = None
|
385 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
386 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
387 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
388 |
+
raise ValueError(
|
389 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
390 |
+
"Use --overwrite_output_dir to overcome."
|
391 |
+
)
|
392 |
+
elif last_checkpoint is not None:
|
393 |
+
logger.info(
|
394 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
395 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
396 |
+
)
|
397 |
+
|
398 |
+
# Setup logging
|
399 |
+
logging.basicConfig(
|
400 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
401 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
402 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
403 |
+
)
|
404 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
405 |
+
|
406 |
+
# Log on each process the small summary:
|
407 |
+
logger.warning(
|
408 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
409 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
410 |
+
)
|
411 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
412 |
+
if is_main_process(training_args.local_rank):
|
413 |
+
transformers.utils.logging.set_verbosity_info()
|
414 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
415 |
+
|
416 |
+
# Set seed before initializing model.
|
417 |
+
set_seed(training_args.seed)
|
418 |
+
|
419 |
+
# 1. First, let's load the dataset
|
420 |
+
raw_datasets = DatasetDict()
|
421 |
+
|
422 |
+
if training_args.do_train:
|
423 |
+
raw_datasets["train"] = load_dataset(
|
424 |
+
data_args.dataset_name,
|
425 |
+
data_args.dataset_config_name,
|
426 |
+
split=data_args.train_split_name,
|
427 |
+
use_auth_token=data_args.use_auth_token,
|
428 |
+
)
|
429 |
+
|
430 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
431 |
+
raise ValueError(
|
432 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
|
433 |
+
" Make sure to set `--audio_column_name` to the correct audio column - one of"
|
434 |
+
f" {', '.join(raw_datasets['train'].column_names)}."
|
435 |
+
)
|
436 |
+
|
437 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
438 |
+
raise ValueError(
|
439 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
440 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
441 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
442 |
+
)
|
443 |
+
|
444 |
+
if data_args.max_train_samples is not None:
|
445 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
446 |
+
|
447 |
+
if training_args.do_eval:
|
448 |
+
raw_datasets["eval"] = load_dataset(
|
449 |
+
data_args.dataset_name,
|
450 |
+
data_args.dataset_config_name,
|
451 |
+
split=data_args.eval_split_name,
|
452 |
+
use_auth_token=data_args.use_auth_token,
|
453 |
+
)
|
454 |
+
|
455 |
+
if data_args.max_eval_samples is not None:
|
456 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
457 |
+
|
458 |
+
# 2. We remove some special characters from the datasets
|
459 |
+
# that make training complicated and do not help in transcribing the speech
|
460 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
461 |
+
# that could be easily picked up by the model
|
462 |
+
chars_to_replace_regex = (
|
463 |
+
f'[{"".join(data_args.chars_to_replace)}]' if data_args.chars_to_replace is not None else None
|
464 |
+
)
|
465 |
+
chars_to_ignore_regex = (
|
466 |
+
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
467 |
+
)
|
468 |
+
text_column_name = data_args.text_column_name
|
469 |
+
|
470 |
+
def replace_special_characters(batch):
|
471 |
+
if chars_to_replace_regex is not None:
|
472 |
+
batch[text_column_name] = re.sub(chars_to_replace_regex, " ", batch[text_column_name]).lower() + " "
|
473 |
+
else:
|
474 |
+
batch[text_column_name] = batch[text_column_name].lower() + " "
|
475 |
+
return batch
|
476 |
+
|
477 |
+
def remove_special_characters(batch):
|
478 |
+
if chars_to_ignore_regex is not None:
|
479 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
480 |
+
else:
|
481 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
482 |
+
return batch
|
483 |
+
|
484 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
485 |
+
raw_datasets = raw_datasets.map(
|
486 |
+
replace_special_characters,
|
487 |
+
desc="replace special characters from datasets",
|
488 |
+
)
|
489 |
+
raw_datasets = raw_datasets.map(
|
490 |
+
remove_special_characters,
|
491 |
+
remove_columns=[text_column_name],
|
492 |
+
desc="remove special characters from datasets",
|
493 |
+
)
|
494 |
+
|
495 |
+
# save special tokens for tokenizer
|
496 |
+
word_delimiter_token = data_args.word_delimiter_token
|
497 |
+
unk_token = data_args.unk_token
|
498 |
+
pad_token = data_args.pad_token
|
499 |
+
|
500 |
+
# 3. Next, let's load the config as we might need it to create
|
501 |
+
# the tokenizer
|
502 |
+
# load config
|
503 |
+
config = AutoConfig.from_pretrained(
|
504 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
505 |
+
)
|
506 |
+
|
507 |
+
# 4. Next, if no tokenizer file is defined,
|
508 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
509 |
+
# the training and evaluation datasets
|
510 |
+
# We need to make sure that only first rank saves vocabulary
|
511 |
+
# make sure all processes wait until vocab is created
|
512 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
513 |
+
tokenizer_kwargs = {}
|
514 |
+
if tokenizer_name_or_path is None:
|
515 |
+
# save vocab in training output dir
|
516 |
+
tokenizer_name_or_path = training_args.output_dir
|
517 |
+
|
518 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
519 |
+
|
520 |
+
with training_args.main_process_first():
|
521 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
522 |
+
os.remove(vocab_file)
|
523 |
+
|
524 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
525 |
+
if not os.path.isfile(vocab_file):
|
526 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
527 |
+
vocab_dict = create_vocabulary_from_data(
|
528 |
+
raw_datasets,
|
529 |
+
word_delimiter_token=word_delimiter_token,
|
530 |
+
unk_token=unk_token,
|
531 |
+
pad_token=pad_token,
|
532 |
+
)
|
533 |
+
|
534 |
+
# save vocab dict to be loaded into tokenizer
|
535 |
+
with open(vocab_file, "w") as file:
|
536 |
+
json.dump(vocab_dict, file)
|
537 |
+
|
538 |
+
# if tokenizer has just been created
|
539 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
540 |
+
tokenizer_kwargs = {
|
541 |
+
"config": config if config.tokenizer_class is not None else None,
|
542 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
543 |
+
"unk_token": unk_token,
|
544 |
+
"pad_token": pad_token,
|
545 |
+
"word_delimiter_token": word_delimiter_token,
|
546 |
+
}
|
547 |
+
|
548 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
549 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
550 |
+
# one local process can concurrently download model & vocab.
|
551 |
+
|
552 |
+
# load feature_extractor and tokenizer
|
553 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
554 |
+
tokenizer_name_or_path,
|
555 |
+
use_auth_token=data_args.use_auth_token,
|
556 |
+
**tokenizer_kwargs,
|
557 |
+
)
|
558 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
559 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
560 |
+
)
|
561 |
+
|
562 |
+
# adapt config
|
563 |
+
config.update(
|
564 |
+
{
|
565 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
566 |
+
"attention_dropout": model_args.attention_dropout,
|
567 |
+
"hidden_dropout": model_args.hidden_dropout,
|
568 |
+
"final_dropout": model_args.final_dropout,
|
569 |
+
"mask_time_prob": model_args.mask_time_prob,
|
570 |
+
"mask_time_length": model_args.mask_time_length,
|
571 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
572 |
+
"mask_feature_length": model_args.mask_feature_length,
|
573 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
574 |
+
"layerdrop": model_args.layerdrop,
|
575 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
576 |
+
"pad_token_id": tokenizer.pad_token_id,
|
577 |
+
"vocab_size": len(tokenizer),
|
578 |
+
"activation_dropout": model_args.activation_dropout,
|
579 |
+
}
|
580 |
+
)
|
581 |
+
|
582 |
+
# create model
|
583 |
+
model = AutoModelForCTC.from_pretrained(
|
584 |
+
model_args.model_name_or_path,
|
585 |
+
cache_dir=model_args.cache_dir,
|
586 |
+
config=config,
|
587 |
+
use_auth_token=data_args.use_auth_token,
|
588 |
+
ignore_mismatched_sizes=True,
|
589 |
+
)
|
590 |
+
|
591 |
+
# freeze encoder
|
592 |
+
if model_args.freeze_feature_encoder:
|
593 |
+
model.freeze_feature_encoder()
|
594 |
+
|
595 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
596 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
597 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
598 |
+
# via the `feature_extractor`
|
599 |
+
|
600 |
+
# make sure that dataset decodes audio with correct sampling rate
|
601 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
602 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
603 |
+
raw_datasets = raw_datasets.cast_column(
|
604 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
605 |
+
)
|
606 |
+
|
607 |
+
# derive max & min input length for sample rate & max duration
|
608 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
609 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
610 |
+
audio_column_name = data_args.audio_column_name
|
611 |
+
num_workers = data_args.preprocessing_num_workers
|
612 |
+
|
613 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
614 |
+
phoneme_language = data_args.phoneme_language
|
615 |
+
|
616 |
+
# Preprocessing the datasets.
|
617 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
618 |
+
def prepare_dataset(batch):
|
619 |
+
# load audio
|
620 |
+
sample = batch[audio_column_name]
|
621 |
+
|
622 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
623 |
+
batch["input_values"] = inputs.input_values[0]
|
624 |
+
batch["input_length"] = len(batch["input_values"])
|
625 |
+
|
626 |
+
# encode targets
|
627 |
+
additional_kwargs = {}
|
628 |
+
if phoneme_language is not None:
|
629 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
630 |
+
|
631 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
632 |
+
return batch
|
633 |
+
|
634 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
635 |
+
vectorized_datasets = raw_datasets.map(
|
636 |
+
prepare_dataset,
|
637 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
638 |
+
num_proc=num_workers,
|
639 |
+
desc="preprocess datasets",
|
640 |
+
)
|
641 |
+
|
642 |
+
def is_audio_in_length_range(length):
|
643 |
+
return length > min_input_length and length < max_input_length
|
644 |
+
|
645 |
+
# filter data that is shorter than min_input_length
|
646 |
+
vectorized_datasets = vectorized_datasets.filter(
|
647 |
+
is_audio_in_length_range,
|
648 |
+
num_proc=num_workers,
|
649 |
+
input_columns=["input_length"],
|
650 |
+
)
|
651 |
+
|
652 |
+
# 7. Next, we can prepare the training.
|
653 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
654 |
+
# instantiate a data collator and the trainer
|
655 |
+
|
656 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
657 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
658 |
+
|
659 |
+
# for large datasets it is advised to run the preprocessing on a
|
660 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
661 |
+
# be a timeout when running the script in distributed mode.
|
662 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
663 |
+
# cached dataset
|
664 |
+
if data_args.preprocessing_only:
|
665 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
666 |
+
return
|
667 |
+
|
668 |
+
def compute_metrics(pred):
|
669 |
+
pred_logits = pred.predictions
|
670 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
671 |
+
|
672 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
673 |
+
|
674 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
675 |
+
# we do not want to group tokens when computing the metrics
|
676 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
677 |
+
|
678 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
679 |
+
|
680 |
+
return metrics
|
681 |
+
|
682 |
+
# Now save everything to be able to create a single processor later
|
683 |
+
if is_main_process(training_args.local_rank):
|
684 |
+
# save feature extractor, tokenizer and config
|
685 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
686 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
687 |
+
config.save_pretrained(training_args.output_dir)
|
688 |
+
|
689 |
+
try:
|
690 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
691 |
+
except (OSError, KeyError):
|
692 |
+
warnings.warn(
|
693 |
+
"Loading a processor from a feature extractor config that does not"
|
694 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
695 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
696 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
697 |
+
FutureWarning,
|
698 |
+
)
|
699 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
700 |
+
|
701 |
+
# Instantiate custom data collator
|
702 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
703 |
+
|
704 |
+
# Initialize Trainer
|
705 |
+
trainer = Trainer(
|
706 |
+
model=model,
|
707 |
+
data_collator=data_collator,
|
708 |
+
args=training_args,
|
709 |
+
compute_metrics=compute_metrics,
|
710 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
711 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
712 |
+
tokenizer=feature_extractor,
|
713 |
+
)
|
714 |
+
|
715 |
+
# 8. Finally, we can start training
|
716 |
+
|
717 |
+
# Training
|
718 |
+
if training_args.do_train:
|
719 |
+
|
720 |
+
# use last checkpoint if exist
|
721 |
+
if last_checkpoint is not None:
|
722 |
+
checkpoint = last_checkpoint
|
723 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
724 |
+
checkpoint = model_args.model_name_or_path
|
725 |
+
else:
|
726 |
+
checkpoint = None
|
727 |
+
|
728 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
729 |
+
trainer.save_model()
|
730 |
+
|
731 |
+
metrics = train_result.metrics
|
732 |
+
max_train_samples = (
|
733 |
+
data_args.max_train_samples
|
734 |
+
if data_args.max_train_samples is not None
|
735 |
+
else len(vectorized_datasets["train"])
|
736 |
+
)
|
737 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
738 |
+
|
739 |
+
trainer.log_metrics("train", metrics)
|
740 |
+
trainer.save_metrics("train", metrics)
|
741 |
+
trainer.save_state()
|
742 |
+
|
743 |
+
# Evaluation
|
744 |
+
results = {}
|
745 |
+
if training_args.do_eval:
|
746 |
+
logger.info("*** Evaluate ***")
|
747 |
+
metrics = trainer.evaluate()
|
748 |
+
max_eval_samples = (
|
749 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
750 |
+
)
|
751 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
752 |
+
|
753 |
+
trainer.log_metrics("eval", metrics)
|
754 |
+
trainer.save_metrics("eval", metrics)
|
755 |
+
|
756 |
+
# Write model card and (optionally) push to hub
|
757 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
758 |
+
kwargs = {
|
759 |
+
"finetuned_from": model_args.model_name_or_path,
|
760 |
+
"tasks": "speech-recognition",
|
761 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
762 |
+
"dataset_args": (
|
763 |
+
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
|
764 |
+
f" {data_args.eval_split_name}"
|
765 |
+
),
|
766 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
767 |
+
}
|
768 |
+
if "common_voice" in data_args.dataset_name:
|
769 |
+
kwargs["language"] = config_name
|
770 |
+
|
771 |
+
if training_args.push_to_hub:
|
772 |
+
trainer.push_to_hub(**kwargs)
|
773 |
+
else:
|
774 |
+
trainer.create_model_card(**kwargs)
|
775 |
+
|
776 |
+
return results
|
777 |
+
|
778 |
+
|
779 |
+
if __name__ == "__main__":
|
780 |
+
main()
|
runs/May21_09-02-48_bioman2/1653117325.7043028/events.out.tfevents.1653117325.bioman2.19214.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82fb10ff9df3efb104856e487ef603c660eb2f153aa260fd17fbe81016b0af6c
|
3 |
+
size 5120
|
runs/May21_09-02-48_bioman2/events.out.tfevents.1653117325.bioman2.19214.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a7c807f6a57e6444980141ea9ca5f0c2b26ea07cfe67afcbc2a3bb0ec031e0b
|
3 |
+
size 68029
|
runs/May21_09-02-48_bioman2/events.out.tfevents.1653250459.bioman2.19214.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e0d53e20940f64d80f7ff85ddefa514142b54a7fec3fbf3af653b1603f5407c
|
3 |
+
size 364
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "replace_word_delimiter_char": " ", "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 50.0,
|
3 |
+
"train_loss": 0.6889870901987062,
|
4 |
+
"train_runtime": 132713.9902,
|
5 |
+
"train_samples": 6770,
|
6 |
+
"train_samples_per_second": 2.551,
|
7 |
+
"train_steps_per_second": 0.212
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 49.999556933983165,
|
5 |
+
"global_step": 28200,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.18,
|
12 |
+
"learning_rate": 3.7125e-06,
|
13 |
+
"loss": 9.6392,
|
14 |
+
"step": 100
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.35,
|
18 |
+
"learning_rate": 7.4625e-06,
|
19 |
+
"loss": 5.3472,
|
20 |
+
"step": 200
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.53,
|
24 |
+
"learning_rate": 1.1212499999999998e-05,
|
25 |
+
"loss": 3.7052,
|
26 |
+
"step": 300
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.71,
|
30 |
+
"learning_rate": 1.49625e-05,
|
31 |
+
"loss": 3.35,
|
32 |
+
"step": 400
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.89,
|
36 |
+
"learning_rate": 1.8712499999999997e-05,
|
37 |
+
"loss": 3.1484,
|
38 |
+
"step": 500
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.89,
|
42 |
+
"eval_loss": 3.084352731704712,
|
43 |
+
"eval_runtime": 31.0524,
|
44 |
+
"eval_samples_per_second": 5.732,
|
45 |
+
"eval_steps_per_second": 1.932,
|
46 |
+
"eval_wer": 1.0,
|
47 |
+
"step": 500
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 1.06,
|
51 |
+
"learning_rate": 2.2462499999999997e-05,
|
52 |
+
"loss": 3.0531,
|
53 |
+
"step": 600
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"epoch": 1.24,
|
57 |
+
"learning_rate": 2.6212499999999997e-05,
|
58 |
+
"loss": 2.9911,
|
59 |
+
"step": 700
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 1.42,
|
63 |
+
"learning_rate": 2.99625e-05,
|
64 |
+
"loss": 2.9576,
|
65 |
+
"step": 800
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 1.6,
|
69 |
+
"learning_rate": 3.37125e-05,
|
70 |
+
"loss": 2.9406,
|
71 |
+
"step": 900
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 1.77,
|
75 |
+
"learning_rate": 3.7462499999999996e-05,
|
76 |
+
"loss": 2.6539,
|
77 |
+
"step": 1000
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 1.77,
|
81 |
+
"eval_loss": 1.7271525859832764,
|
82 |
+
"eval_runtime": 30.9027,
|
83 |
+
"eval_samples_per_second": 5.76,
|
84 |
+
"eval_steps_per_second": 1.942,
|
85 |
+
"eval_wer": 0.9358414511252939,
|
86 |
+
"step": 1000
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.95,
|
90 |
+
"learning_rate": 4.12125e-05,
|
91 |
+
"loss": 1.5429,
|
92 |
+
"step": 1100
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 2.13,
|
96 |
+
"learning_rate": 4.4962499999999995e-05,
|
97 |
+
"loss": 1.0875,
|
98 |
+
"step": 1200
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 2.3,
|
102 |
+
"learning_rate": 4.871249999999999e-05,
|
103 |
+
"loss": 0.9728,
|
104 |
+
"step": 1300
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 2.48,
|
108 |
+
"learning_rate": 5.2424999999999994e-05,
|
109 |
+
"loss": 0.9117,
|
110 |
+
"step": 1400
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 2.66,
|
114 |
+
"learning_rate": 5.6175e-05,
|
115 |
+
"loss": 0.8732,
|
116 |
+
"step": 1500
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 2.66,
|
120 |
+
"eval_loss": 0.19752363860607147,
|
121 |
+
"eval_runtime": 31.0609,
|
122 |
+
"eval_samples_per_second": 5.731,
|
123 |
+
"eval_steps_per_second": 1.932,
|
124 |
+
"eval_wer": 0.16090023513604298,
|
125 |
+
"step": 1500
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 2.84,
|
129 |
+
"learning_rate": 5.9925e-05,
|
130 |
+
"loss": 0.8518,
|
131 |
+
"step": 1600
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 3.01,
|
135 |
+
"learning_rate": 6.367499999999999e-05,
|
136 |
+
"loss": 0.8373,
|
137 |
+
"step": 1700
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 3.19,
|
141 |
+
"learning_rate": 6.7425e-05,
|
142 |
+
"loss": 0.7958,
|
143 |
+
"step": 1800
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 3.37,
|
147 |
+
"learning_rate": 7.1175e-05,
|
148 |
+
"loss": 0.8058,
|
149 |
+
"step": 1900
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 3.55,
|
153 |
+
"learning_rate": 7.492499999999999e-05,
|
154 |
+
"loss": 0.8075,
|
155 |
+
"step": 2000
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 3.55,
|
159 |
+
"eval_loss": 0.1483038365840912,
|
160 |
+
"eval_runtime": 31.0609,
|
161 |
+
"eval_samples_per_second": 5.731,
|
162 |
+
"eval_steps_per_second": 1.932,
|
163 |
+
"eval_wer": 0.1467920725562647,
|
164 |
+
"step": 2000
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 3.72,
|
168 |
+
"learning_rate": 7.471946564885497e-05,
|
169 |
+
"loss": 0.785,
|
170 |
+
"step": 2100
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 3.9,
|
174 |
+
"learning_rate": 7.443320610687022e-05,
|
175 |
+
"loss": 0.7656,
|
176 |
+
"step": 2200
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 4.08,
|
180 |
+
"learning_rate": 7.414694656488549e-05,
|
181 |
+
"loss": 0.7681,
|
182 |
+
"step": 2300
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 4.26,
|
186 |
+
"learning_rate": 7.386068702290076e-05,
|
187 |
+
"loss": 0.7535,
|
188 |
+
"step": 2400
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 4.43,
|
192 |
+
"learning_rate": 7.357442748091603e-05,
|
193 |
+
"loss": 0.7358,
|
194 |
+
"step": 2500
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 4.43,
|
198 |
+
"eval_loss": 0.1331482231616974,
|
199 |
+
"eval_runtime": 30.9431,
|
200 |
+
"eval_samples_per_second": 5.752,
|
201 |
+
"eval_steps_per_second": 1.939,
|
202 |
+
"eval_wer": 0.14007389989922742,
|
203 |
+
"step": 2500
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 4.61,
|
207 |
+
"learning_rate": 7.328816793893128e-05,
|
208 |
+
"loss": 0.7478,
|
209 |
+
"step": 2600
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 4.79,
|
213 |
+
"learning_rate": 7.300190839694656e-05,
|
214 |
+
"loss": 0.746,
|
215 |
+
"step": 2700
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 4.96,
|
219 |
+
"learning_rate": 7.271564885496182e-05,
|
220 |
+
"loss": 0.7545,
|
221 |
+
"step": 2800
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 5.14,
|
225 |
+
"learning_rate": 7.242938931297709e-05,
|
226 |
+
"loss": 0.7268,
|
227 |
+
"step": 2900
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 5.32,
|
231 |
+
"learning_rate": 7.214312977099236e-05,
|
232 |
+
"loss": 0.7079,
|
233 |
+
"step": 3000
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 5.32,
|
237 |
+
"eval_loss": 0.12731623649597168,
|
238 |
+
"eval_runtime": 30.9985,
|
239 |
+
"eval_samples_per_second": 5.742,
|
240 |
+
"eval_steps_per_second": 1.936,
|
241 |
+
"eval_wer": 0.1363789049378569,
|
242 |
+
"step": 3000
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 5.5,
|
246 |
+
"learning_rate": 7.185687022900763e-05,
|
247 |
+
"loss": 0.7344,
|
248 |
+
"step": 3100
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 5.67,
|
252 |
+
"learning_rate": 7.15706106870229e-05,
|
253 |
+
"loss": 0.7334,
|
254 |
+
"step": 3200
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 5.85,
|
258 |
+
"learning_rate": 7.128435114503815e-05,
|
259 |
+
"loss": 0.7274,
|
260 |
+
"step": 3300
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 6.03,
|
264 |
+
"learning_rate": 7.099809160305343e-05,
|
265 |
+
"loss": 0.7271,
|
266 |
+
"step": 3400
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 6.21,
|
270 |
+
"learning_rate": 7.071469465648854e-05,
|
271 |
+
"loss": 0.7032,
|
272 |
+
"step": 3500
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 6.21,
|
276 |
+
"eval_loss": 0.11333052814006805,
|
277 |
+
"eval_runtime": 31.1935,
|
278 |
+
"eval_samples_per_second": 5.706,
|
279 |
+
"eval_steps_per_second": 1.923,
|
280 |
+
"eval_wer": 0.12395028552233793,
|
281 |
+
"step": 3500
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 6.38,
|
285 |
+
"learning_rate": 7.04284351145038e-05,
|
286 |
+
"loss": 0.6852,
|
287 |
+
"step": 3600
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 6.56,
|
291 |
+
"learning_rate": 7.014217557251907e-05,
|
292 |
+
"loss": 0.699,
|
293 |
+
"step": 3700
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 6.74,
|
297 |
+
"learning_rate": 6.985591603053435e-05,
|
298 |
+
"loss": 0.6894,
|
299 |
+
"step": 3800
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 6.91,
|
303 |
+
"learning_rate": 6.956965648854962e-05,
|
304 |
+
"loss": 0.7014,
|
305 |
+
"step": 3900
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 7.09,
|
309 |
+
"learning_rate": 6.928339694656487e-05,
|
310 |
+
"loss": 0.7129,
|
311 |
+
"step": 4000
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 7.09,
|
315 |
+
"eval_loss": 0.11242285370826721,
|
316 |
+
"eval_runtime": 31.0672,
|
317 |
+
"eval_samples_per_second": 5.73,
|
318 |
+
"eval_steps_per_second": 1.931,
|
319 |
+
"eval_wer": 0.1289889150151159,
|
320 |
+
"step": 4000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 7.27,
|
324 |
+
"learning_rate": 6.899713740458015e-05,
|
325 |
+
"loss": 0.6902,
|
326 |
+
"step": 4100
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 7.45,
|
330 |
+
"learning_rate": 6.871087786259541e-05,
|
331 |
+
"loss": 0.6898,
|
332 |
+
"step": 4200
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 7.62,
|
336 |
+
"learning_rate": 6.842461832061069e-05,
|
337 |
+
"loss": 0.6785,
|
338 |
+
"step": 4300
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 7.8,
|
342 |
+
"learning_rate": 6.813835877862594e-05,
|
343 |
+
"loss": 0.7024,
|
344 |
+
"step": 4400
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 7.98,
|
348 |
+
"learning_rate": 6.785209923664122e-05,
|
349 |
+
"loss": 0.6771,
|
350 |
+
"step": 4500
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 7.98,
|
354 |
+
"eval_loss": 0.11212227493524551,
|
355 |
+
"eval_runtime": 31.0691,
|
356 |
+
"eval_samples_per_second": 5.729,
|
357 |
+
"eval_steps_per_second": 1.931,
|
358 |
+
"eval_wer": 0.12999664091367147,
|
359 |
+
"step": 4500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 8.16,
|
363 |
+
"learning_rate": 6.756583969465648e-05,
|
364 |
+
"loss": 0.6555,
|
365 |
+
"step": 4600
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 8.33,
|
369 |
+
"learning_rate": 6.727958015267174e-05,
|
370 |
+
"loss": 0.6897,
|
371 |
+
"step": 4700
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 8.51,
|
375 |
+
"learning_rate": 6.699618320610687e-05,
|
376 |
+
"loss": 0.6809,
|
377 |
+
"step": 4800
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 8.69,
|
381 |
+
"learning_rate": 6.670992366412213e-05,
|
382 |
+
"loss": 0.6821,
|
383 |
+
"step": 4900
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 8.86,
|
387 |
+
"learning_rate": 6.642366412213741e-05,
|
388 |
+
"loss": 0.6859,
|
389 |
+
"step": 5000
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 8.86,
|
393 |
+
"eval_loss": 0.109534852206707,
|
394 |
+
"eval_runtime": 31.3176,
|
395 |
+
"eval_samples_per_second": 5.684,
|
396 |
+
"eval_steps_per_second": 1.916,
|
397 |
+
"eval_wer": 0.13134027544507895,
|
398 |
+
"step": 5000
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 9.04,
|
402 |
+
"learning_rate": 6.613740458015266e-05,
|
403 |
+
"loss": 0.6849,
|
404 |
+
"step": 5100
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 9.22,
|
408 |
+
"learning_rate": 6.585114503816793e-05,
|
409 |
+
"loss": 0.6615,
|
410 |
+
"step": 5200
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 9.4,
|
414 |
+
"learning_rate": 6.55648854961832e-05,
|
415 |
+
"loss": 0.6587,
|
416 |
+
"step": 5300
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 9.57,
|
420 |
+
"learning_rate": 6.527862595419846e-05,
|
421 |
+
"loss": 0.6741,
|
422 |
+
"step": 5400
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 9.75,
|
426 |
+
"learning_rate": 6.499236641221373e-05,
|
427 |
+
"loss": 0.6496,
|
428 |
+
"step": 5500
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 9.75,
|
432 |
+
"eval_loss": 0.1090548112988472,
|
433 |
+
"eval_runtime": 31.0434,
|
434 |
+
"eval_samples_per_second": 5.734,
|
435 |
+
"eval_steps_per_second": 1.933,
|
436 |
+
"eval_wer": 0.12495801142089352,
|
437 |
+
"step": 5500
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 9.93,
|
441 |
+
"learning_rate": 6.4706106870229e-05,
|
442 |
+
"loss": 0.6672,
|
443 |
+
"step": 5600
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 10.11,
|
447 |
+
"learning_rate": 6.441984732824428e-05,
|
448 |
+
"loss": 0.6511,
|
449 |
+
"step": 5700
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 10.28,
|
453 |
+
"learning_rate": 6.413645038167938e-05,
|
454 |
+
"loss": 0.6393,
|
455 |
+
"step": 5800
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 10.46,
|
459 |
+
"learning_rate": 6.385019083969465e-05,
|
460 |
+
"loss": 0.6531,
|
461 |
+
"step": 5900
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 10.64,
|
465 |
+
"learning_rate": 6.356393129770992e-05,
|
466 |
+
"loss": 0.6431,
|
467 |
+
"step": 6000
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 10.64,
|
471 |
+
"eval_loss": 0.11021342128515244,
|
472 |
+
"eval_runtime": 30.9854,
|
473 |
+
"eval_samples_per_second": 5.745,
|
474 |
+
"eval_steps_per_second": 1.936,
|
475 |
+
"eval_wer": 0.12932482364796774,
|
476 |
+
"step": 6000
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 10.82,
|
480 |
+
"learning_rate": 6.32776717557252e-05,
|
481 |
+
"loss": 0.6476,
|
482 |
+
"step": 6100
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 10.99,
|
486 |
+
"learning_rate": 6.299141221374044e-05,
|
487 |
+
"loss": 0.6504,
|
488 |
+
"step": 6200
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 11.17,
|
492 |
+
"learning_rate": 6.270515267175572e-05,
|
493 |
+
"loss": 0.6366,
|
494 |
+
"step": 6300
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 11.35,
|
498 |
+
"learning_rate": 6.241889312977098e-05,
|
499 |
+
"loss": 0.6435,
|
500 |
+
"step": 6400
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 11.52,
|
504 |
+
"learning_rate": 6.213263358778625e-05,
|
505 |
+
"loss": 0.6422,
|
506 |
+
"step": 6500
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 11.52,
|
510 |
+
"eval_loss": 0.11072035878896713,
|
511 |
+
"eval_runtime": 31.126,
|
512 |
+
"eval_samples_per_second": 5.719,
|
513 |
+
"eval_steps_per_second": 1.928,
|
514 |
+
"eval_wer": 0.11790393013100436,
|
515 |
+
"step": 6500
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 11.7,
|
519 |
+
"learning_rate": 6.184637404580152e-05,
|
520 |
+
"loss": 0.636,
|
521 |
+
"step": 6600
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 11.88,
|
525 |
+
"learning_rate": 6.156011450381679e-05,
|
526 |
+
"loss": 0.647,
|
527 |
+
"step": 6700
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 12.06,
|
531 |
+
"learning_rate": 6.127385496183207e-05,
|
532 |
+
"loss": 0.644,
|
533 |
+
"step": 6800
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 12.23,
|
537 |
+
"learning_rate": 6.098759541984732e-05,
|
538 |
+
"loss": 0.611,
|
539 |
+
"step": 6900
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 12.41,
|
543 |
+
"learning_rate": 6.070133587786259e-05,
|
544 |
+
"loss": 0.6334,
|
545 |
+
"step": 7000
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 12.41,
|
549 |
+
"eval_loss": 0.10494451969861984,
|
550 |
+
"eval_runtime": 31.1005,
|
551 |
+
"eval_samples_per_second": 5.723,
|
552 |
+
"eval_steps_per_second": 1.929,
|
553 |
+
"eval_wer": 0.12361437688948607,
|
554 |
+
"step": 7000
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 12.59,
|
558 |
+
"learning_rate": 6.0415076335877855e-05,
|
559 |
+
"loss": 0.6305,
|
560 |
+
"step": 7100
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 12.77,
|
564 |
+
"learning_rate": 6.0128816793893126e-05,
|
565 |
+
"loss": 0.6292,
|
566 |
+
"step": 7200
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 12.94,
|
570 |
+
"learning_rate": 5.984255725190839e-05,
|
571 |
+
"loss": 0.6341,
|
572 |
+
"step": 7300
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 13.12,
|
576 |
+
"learning_rate": 5.955629770992366e-05,
|
577 |
+
"loss": 0.625,
|
578 |
+
"step": 7400
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 13.3,
|
582 |
+
"learning_rate": 5.927003816793893e-05,
|
583 |
+
"loss": 0.599,
|
584 |
+
"step": 7500
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 13.3,
|
588 |
+
"eval_loss": 0.10921534150838852,
|
589 |
+
"eval_runtime": 31.0896,
|
590 |
+
"eval_samples_per_second": 5.725,
|
591 |
+
"eval_steps_per_second": 1.93,
|
592 |
+
"eval_wer": 0.11521666106818945,
|
593 |
+
"step": 7500
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 13.47,
|
597 |
+
"learning_rate": 5.898377862595419e-05,
|
598 |
+
"loss": 0.6144,
|
599 |
+
"step": 7600
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 13.65,
|
603 |
+
"learning_rate": 5.869751908396946e-05,
|
604 |
+
"loss": 0.6314,
|
605 |
+
"step": 7700
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 13.83,
|
609 |
+
"learning_rate": 5.8411259541984726e-05,
|
610 |
+
"loss": 0.6185,
|
611 |
+
"step": 7800
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 14.01,
|
615 |
+
"learning_rate": 5.8124999999999997e-05,
|
616 |
+
"loss": 0.6122,
|
617 |
+
"step": 7900
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 14.18,
|
621 |
+
"learning_rate": 5.783874045801526e-05,
|
622 |
+
"loss": 0.6205,
|
623 |
+
"step": 8000
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 14.18,
|
627 |
+
"eval_loss": 0.1046827957034111,
|
628 |
+
"eval_runtime": 31.2229,
|
629 |
+
"eval_samples_per_second": 5.701,
|
630 |
+
"eval_steps_per_second": 1.922,
|
631 |
+
"eval_wer": 0.12193483372522673,
|
632 |
+
"step": 8000
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 14.36,
|
636 |
+
"learning_rate": 5.755248091603053e-05,
|
637 |
+
"loss": 0.612,
|
638 |
+
"step": 8100
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 14.54,
|
642 |
+
"learning_rate": 5.7266221374045794e-05,
|
643 |
+
"loss": 0.6196,
|
644 |
+
"step": 8200
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 14.72,
|
648 |
+
"learning_rate": 5.6979961832061064e-05,
|
649 |
+
"loss": 0.6114,
|
650 |
+
"step": 8300
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 14.89,
|
654 |
+
"learning_rate": 5.6693702290076334e-05,
|
655 |
+
"loss": 0.6005,
|
656 |
+
"step": 8400
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 15.07,
|
660 |
+
"learning_rate": 5.64074427480916e-05,
|
661 |
+
"loss": 0.5944,
|
662 |
+
"step": 8500
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 15.07,
|
666 |
+
"eval_loss": 0.10684490948915482,
|
667 |
+
"eval_runtime": 31.2028,
|
668 |
+
"eval_samples_per_second": 5.705,
|
669 |
+
"eval_steps_per_second": 1.923,
|
670 |
+
"eval_wer": 0.12025529056096741,
|
671 |
+
"step": 8500
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 15.25,
|
675 |
+
"learning_rate": 5.612118320610687e-05,
|
676 |
+
"loss": 0.6108,
|
677 |
+
"step": 8600
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"epoch": 15.43,
|
681 |
+
"learning_rate": 5.583492366412213e-05,
|
682 |
+
"loss": 0.5995,
|
683 |
+
"step": 8700
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 15.6,
|
687 |
+
"learning_rate": 5.55486641221374e-05,
|
688 |
+
"loss": 0.6117,
|
689 |
+
"step": 8800
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 15.78,
|
693 |
+
"learning_rate": 5.5262404580152665e-05,
|
694 |
+
"loss": 0.6006,
|
695 |
+
"step": 8900
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 15.96,
|
699 |
+
"learning_rate": 5.4976145038167935e-05,
|
700 |
+
"loss": 0.6102,
|
701 |
+
"step": 9000
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 15.96,
|
705 |
+
"eval_loss": 0.10560546070337296,
|
706 |
+
"eval_runtime": 31.2837,
|
707 |
+
"eval_samples_per_second": 5.69,
|
708 |
+
"eval_steps_per_second": 1.918,
|
709 |
+
"eval_wer": 0.11588847833389318,
|
710 |
+
"step": 9000
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 16.13,
|
714 |
+
"learning_rate": 5.46898854961832e-05,
|
715 |
+
"loss": 0.5968,
|
716 |
+
"step": 9100
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 16.31,
|
720 |
+
"learning_rate": 5.440362595419847e-05,
|
721 |
+
"loss": 0.5912,
|
722 |
+
"step": 9200
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 16.49,
|
726 |
+
"learning_rate": 5.411736641221374e-05,
|
727 |
+
"loss": 0.5889,
|
728 |
+
"step": 9300
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 16.67,
|
732 |
+
"learning_rate": 5.3831106870229e-05,
|
733 |
+
"loss": 0.6014,
|
734 |
+
"step": 9400
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 16.84,
|
738 |
+
"learning_rate": 5.354484732824427e-05,
|
739 |
+
"loss": 0.5983,
|
740 |
+
"step": 9500
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 16.84,
|
744 |
+
"eval_loss": 0.1061149537563324,
|
745 |
+
"eval_runtime": 31.4987,
|
746 |
+
"eval_samples_per_second": 5.651,
|
747 |
+
"eval_steps_per_second": 1.905,
|
748 |
+
"eval_wer": 0.11521666106818945,
|
749 |
+
"step": 9500
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 17.02,
|
753 |
+
"learning_rate": 5.3258587786259536e-05,
|
754 |
+
"loss": 0.5992,
|
755 |
+
"step": 9600
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 17.2,
|
759 |
+
"learning_rate": 5.2972328244274806e-05,
|
760 |
+
"loss": 0.5887,
|
761 |
+
"step": 9700
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 17.38,
|
765 |
+
"learning_rate": 5.268606870229007e-05,
|
766 |
+
"loss": 0.6012,
|
767 |
+
"step": 9800
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 17.55,
|
771 |
+
"learning_rate": 5.239980916030534e-05,
|
772 |
+
"loss": 0.5985,
|
773 |
+
"step": 9900
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 17.73,
|
777 |
+
"learning_rate": 5.211354961832061e-05,
|
778 |
+
"loss": 0.5882,
|
779 |
+
"step": 10000
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 17.73,
|
783 |
+
"eval_loss": 0.10430345684289932,
|
784 |
+
"eval_runtime": 30.988,
|
785 |
+
"eval_samples_per_second": 5.744,
|
786 |
+
"eval_steps_per_second": 1.936,
|
787 |
+
"eval_wer": 0.11353711790393013,
|
788 |
+
"step": 10000
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 17.91,
|
792 |
+
"learning_rate": 5.182729007633587e-05,
|
793 |
+
"loss": 0.5906,
|
794 |
+
"step": 10100
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 18.09,
|
798 |
+
"learning_rate": 5.1541030534351143e-05,
|
799 |
+
"loss": 0.5843,
|
800 |
+
"step": 10200
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 18.26,
|
804 |
+
"learning_rate": 5.1257633587786254e-05,
|
805 |
+
"loss": 0.5976,
|
806 |
+
"step": 10300
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 18.44,
|
810 |
+
"learning_rate": 5.0971374045801525e-05,
|
811 |
+
"loss": 0.59,
|
812 |
+
"step": 10400
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 18.62,
|
816 |
+
"learning_rate": 5.068511450381679e-05,
|
817 |
+
"loss": 0.5876,
|
818 |
+
"step": 10500
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 18.62,
|
822 |
+
"eval_loss": 0.10231117904186249,
|
823 |
+
"eval_runtime": 31.0041,
|
824 |
+
"eval_samples_per_second": 5.741,
|
825 |
+
"eval_steps_per_second": 1.935,
|
826 |
+
"eval_wer": 0.11588847833389318,
|
827 |
+
"step": 10500
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 18.79,
|
831 |
+
"learning_rate": 5.039885496183206e-05,
|
832 |
+
"loss": 0.5845,
|
833 |
+
"step": 10600
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 18.97,
|
837 |
+
"learning_rate": 5.011259541984732e-05,
|
838 |
+
"loss": 0.5812,
|
839 |
+
"step": 10700
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 19.15,
|
843 |
+
"learning_rate": 4.982633587786259e-05,
|
844 |
+
"loss": 0.5695,
|
845 |
+
"step": 10800
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 19.33,
|
849 |
+
"learning_rate": 4.954007633587786e-05,
|
850 |
+
"loss": 0.5665,
|
851 |
+
"step": 10900
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"epoch": 19.5,
|
855 |
+
"learning_rate": 4.9253816793893125e-05,
|
856 |
+
"loss": 0.5717,
|
857 |
+
"step": 11000
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 19.5,
|
861 |
+
"eval_loss": 0.10367337614297867,
|
862 |
+
"eval_runtime": 31.2366,
|
863 |
+
"eval_samples_per_second": 5.698,
|
864 |
+
"eval_steps_per_second": 1.921,
|
865 |
+
"eval_wer": 0.1232784682566342,
|
866 |
+
"step": 11000
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 19.68,
|
870 |
+
"learning_rate": 4.8967557251908396e-05,
|
871 |
+
"loss": 0.5657,
|
872 |
+
"step": 11100
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 19.86,
|
876 |
+
"learning_rate": 4.868129770992366e-05,
|
877 |
+
"loss": 0.5733,
|
878 |
+
"step": 11200
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 20.04,
|
882 |
+
"learning_rate": 4.839503816793893e-05,
|
883 |
+
"loss": 0.5816,
|
884 |
+
"step": 11300
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 20.21,
|
888 |
+
"learning_rate": 4.810877862595419e-05,
|
889 |
+
"loss": 0.5694,
|
890 |
+
"step": 11400
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 20.39,
|
894 |
+
"learning_rate": 4.782251908396946e-05,
|
895 |
+
"loss": 0.5537,
|
896 |
+
"step": 11500
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 20.39,
|
900 |
+
"eval_loss": 0.10704291611909866,
|
901 |
+
"eval_runtime": 31.0837,
|
902 |
+
"eval_samples_per_second": 5.726,
|
903 |
+
"eval_steps_per_second": 1.93,
|
904 |
+
"eval_wer": 0.11924756466241182,
|
905 |
+
"step": 11500
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 20.57,
|
909 |
+
"learning_rate": 4.7536259541984726e-05,
|
910 |
+
"loss": 0.5726,
|
911 |
+
"step": 11600
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 20.74,
|
915 |
+
"learning_rate": 4.7249999999999997e-05,
|
916 |
+
"loss": 0.5742,
|
917 |
+
"step": 11700
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 20.92,
|
921 |
+
"learning_rate": 4.696374045801527e-05,
|
922 |
+
"loss": 0.563,
|
923 |
+
"step": 11800
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 21.1,
|
927 |
+
"learning_rate": 4.667748091603053e-05,
|
928 |
+
"loss": 0.5655,
|
929 |
+
"step": 11900
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 21.28,
|
933 |
+
"learning_rate": 4.63912213740458e-05,
|
934 |
+
"loss": 0.5636,
|
935 |
+
"step": 12000
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 21.28,
|
939 |
+
"eval_loss": 0.10363561660051346,
|
940 |
+
"eval_runtime": 31.1987,
|
941 |
+
"eval_samples_per_second": 5.705,
|
942 |
+
"eval_steps_per_second": 1.923,
|
943 |
+
"eval_wer": 0.11689620423244877,
|
944 |
+
"step": 12000
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 21.45,
|
948 |
+
"learning_rate": 4.6104961832061064e-05,
|
949 |
+
"loss": 0.5612,
|
950 |
+
"step": 12100
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 21.63,
|
954 |
+
"learning_rate": 4.5818702290076334e-05,
|
955 |
+
"loss": 0.5732,
|
956 |
+
"step": 12200
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 21.81,
|
960 |
+
"learning_rate": 4.55324427480916e-05,
|
961 |
+
"loss": 0.5726,
|
962 |
+
"step": 12300
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 21.99,
|
966 |
+
"learning_rate": 4.524618320610687e-05,
|
967 |
+
"loss": 0.5547,
|
968 |
+
"step": 12400
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 22.16,
|
972 |
+
"learning_rate": 4.495992366412213e-05,
|
973 |
+
"loss": 0.5536,
|
974 |
+
"step": 12500
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 22.16,
|
978 |
+
"eval_loss": 0.10082551091909409,
|
979 |
+
"eval_runtime": 31.121,
|
980 |
+
"eval_samples_per_second": 5.72,
|
981 |
+
"eval_steps_per_second": 1.928,
|
982 |
+
"eval_wer": 0.11823983876385623,
|
983 |
+
"step": 12500
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 22.34,
|
987 |
+
"learning_rate": 4.46736641221374e-05,
|
988 |
+
"loss": 0.5509,
|
989 |
+
"step": 12600
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 22.52,
|
993 |
+
"learning_rate": 4.439026717557252e-05,
|
994 |
+
"loss": 0.5645,
|
995 |
+
"step": 12700
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 22.69,
|
999 |
+
"learning_rate": 4.410400763358778e-05,
|
1000 |
+
"loss": 0.5527,
|
1001 |
+
"step": 12800
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 22.87,
|
1005 |
+
"learning_rate": 4.381774809160305e-05,
|
1006 |
+
"loss": 0.547,
|
1007 |
+
"step": 12900
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 23.05,
|
1011 |
+
"learning_rate": 4.3534351145038163e-05,
|
1012 |
+
"loss": 0.5656,
|
1013 |
+
"step": 13000
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 23.05,
|
1017 |
+
"eval_loss": 0.10101909935474396,
|
1018 |
+
"eval_runtime": 30.9319,
|
1019 |
+
"eval_samples_per_second": 5.755,
|
1020 |
+
"eval_steps_per_second": 1.94,
|
1021 |
+
"eval_wer": 0.11723211286530064,
|
1022 |
+
"step": 13000
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 23.23,
|
1026 |
+
"learning_rate": 4.3248091603053434e-05,
|
1027 |
+
"loss": 0.5483,
|
1028 |
+
"step": 13100
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 23.4,
|
1032 |
+
"learning_rate": 4.29618320610687e-05,
|
1033 |
+
"loss": 0.5501,
|
1034 |
+
"step": 13200
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 23.58,
|
1038 |
+
"learning_rate": 4.267557251908397e-05,
|
1039 |
+
"loss": 0.5429,
|
1040 |
+
"step": 13300
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 23.76,
|
1044 |
+
"learning_rate": 4.238931297709923e-05,
|
1045 |
+
"loss": 0.5455,
|
1046 |
+
"step": 13400
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 23.94,
|
1050 |
+
"learning_rate": 4.21030534351145e-05,
|
1051 |
+
"loss": 0.5504,
|
1052 |
+
"step": 13500
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 23.94,
|
1056 |
+
"eval_loss": 0.10192937403917313,
|
1057 |
+
"eval_runtime": 31.0113,
|
1058 |
+
"eval_samples_per_second": 5.74,
|
1059 |
+
"eval_steps_per_second": 1.935,
|
1060 |
+
"eval_wer": 0.11051394020826336,
|
1061 |
+
"step": 13500
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"epoch": 24.11,
|
1065 |
+
"learning_rate": 4.181679389312977e-05,
|
1066 |
+
"loss": 0.5601,
|
1067 |
+
"step": 13600
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 24.29,
|
1071 |
+
"learning_rate": 4.1530534351145035e-05,
|
1072 |
+
"loss": 0.5419,
|
1073 |
+
"step": 13700
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 24.47,
|
1077 |
+
"learning_rate": 4.1244274809160305e-05,
|
1078 |
+
"loss": 0.5389,
|
1079 |
+
"step": 13800
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 24.65,
|
1083 |
+
"learning_rate": 4.095801526717557e-05,
|
1084 |
+
"loss": 0.5572,
|
1085 |
+
"step": 13900
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 24.82,
|
1089 |
+
"learning_rate": 4.067175572519084e-05,
|
1090 |
+
"loss": 0.5476,
|
1091 |
+
"step": 14000
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 24.82,
|
1095 |
+
"eval_loss": 0.10260963439941406,
|
1096 |
+
"eval_runtime": 31.1565,
|
1097 |
+
"eval_samples_per_second": 5.713,
|
1098 |
+
"eval_steps_per_second": 1.926,
|
1099 |
+
"eval_wer": 0.11656029559959691,
|
1100 |
+
"step": 14000
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 25.0,
|
1104 |
+
"learning_rate": 4.03854961832061e-05,
|
1105 |
+
"loss": 0.5554,
|
1106 |
+
"step": 14100
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 25.18,
|
1110 |
+
"learning_rate": 4.009923664122137e-05,
|
1111 |
+
"loss": 0.537,
|
1112 |
+
"step": 14200
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 25.35,
|
1116 |
+
"learning_rate": 3.9812977099236635e-05,
|
1117 |
+
"loss": 0.5346,
|
1118 |
+
"step": 14300
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 25.53,
|
1122 |
+
"learning_rate": 3.9526717557251906e-05,
|
1123 |
+
"loss": 0.5245,
|
1124 |
+
"step": 14400
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 25.71,
|
1128 |
+
"learning_rate": 3.9240458015267176e-05,
|
1129 |
+
"loss": 0.5375,
|
1130 |
+
"step": 14500
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 25.71,
|
1134 |
+
"eval_loss": 0.1107296496629715,
|
1135 |
+
"eval_runtime": 30.9057,
|
1136 |
+
"eval_samples_per_second": 5.759,
|
1137 |
+
"eval_steps_per_second": 1.941,
|
1138 |
+
"eval_wer": 0.11891165602955996,
|
1139 |
+
"step": 14500
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 25.89,
|
1143 |
+
"learning_rate": 3.895419847328244e-05,
|
1144 |
+
"loss": 0.5437,
|
1145 |
+
"step": 14600
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 26.06,
|
1149 |
+
"learning_rate": 3.866793893129771e-05,
|
1150 |
+
"loss": 0.5284,
|
1151 |
+
"step": 14700
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 26.24,
|
1155 |
+
"learning_rate": 3.838167938931297e-05,
|
1156 |
+
"loss": 0.5276,
|
1157 |
+
"step": 14800
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 26.42,
|
1161 |
+
"learning_rate": 3.809541984732824e-05,
|
1162 |
+
"loss": 0.5441,
|
1163 |
+
"step": 14900
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 26.6,
|
1167 |
+
"learning_rate": 3.7809160305343507e-05,
|
1168 |
+
"loss": 0.5318,
|
1169 |
+
"step": 15000
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"epoch": 26.6,
|
1173 |
+
"eval_loss": 0.10514429956674576,
|
1174 |
+
"eval_runtime": 31.3716,
|
1175 |
+
"eval_samples_per_second": 5.674,
|
1176 |
+
"eval_steps_per_second": 1.913,
|
1177 |
+
"eval_wer": 0.11420893516963386,
|
1178 |
+
"step": 15000
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 26.77,
|
1182 |
+
"learning_rate": 3.752290076335878e-05,
|
1183 |
+
"loss": 0.5343,
|
1184 |
+
"step": 15100
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 26.95,
|
1188 |
+
"learning_rate": 3.723664122137404e-05,
|
1189 |
+
"loss": 0.5394,
|
1190 |
+
"step": 15200
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 27.13,
|
1194 |
+
"learning_rate": 3.695038167938931e-05,
|
1195 |
+
"loss": 0.5352,
|
1196 |
+
"step": 15300
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 27.3,
|
1200 |
+
"learning_rate": 3.6664122137404574e-05,
|
1201 |
+
"loss": 0.5398,
|
1202 |
+
"step": 15400
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 27.48,
|
1206 |
+
"learning_rate": 3.6377862595419844e-05,
|
1207 |
+
"loss": 0.5278,
|
1208 |
+
"step": 15500
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 27.48,
|
1212 |
+
"eval_loss": 0.10493182390928268,
|
1213 |
+
"eval_runtime": 31.3849,
|
1214 |
+
"eval_samples_per_second": 5.672,
|
1215 |
+
"eval_steps_per_second": 1.912,
|
1216 |
+
"eval_wer": 0.11656029559959691,
|
1217 |
+
"step": 15500
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"epoch": 27.66,
|
1221 |
+
"learning_rate": 3.609160305343511e-05,
|
1222 |
+
"loss": 0.538,
|
1223 |
+
"step": 15600
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 27.84,
|
1227 |
+
"learning_rate": 3.580534351145038e-05,
|
1228 |
+
"loss": 0.5143,
|
1229 |
+
"step": 15700
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 28.01,
|
1233 |
+
"learning_rate": 3.551908396946565e-05,
|
1234 |
+
"loss": 0.5229,
|
1235 |
+
"step": 15800
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 28.19,
|
1239 |
+
"learning_rate": 3.523282442748091e-05,
|
1240 |
+
"loss": 0.522,
|
1241 |
+
"step": 15900
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 28.37,
|
1245 |
+
"learning_rate": 3.494656488549618e-05,
|
1246 |
+
"loss": 0.5204,
|
1247 |
+
"step": 16000
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 28.37,
|
1251 |
+
"eval_loss": 0.10806475579738617,
|
1252 |
+
"eval_runtime": 31.4114,
|
1253 |
+
"eval_samples_per_second": 5.667,
|
1254 |
+
"eval_steps_per_second": 1.91,
|
1255 |
+
"eval_wer": 0.11823983876385623,
|
1256 |
+
"step": 16000
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 28.55,
|
1260 |
+
"learning_rate": 3.4660305343511445e-05,
|
1261 |
+
"loss": 0.5322,
|
1262 |
+
"step": 16100
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 28.72,
|
1266 |
+
"learning_rate": 3.4374045801526715e-05,
|
1267 |
+
"loss": 0.5151,
|
1268 |
+
"step": 16200
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 28.9,
|
1272 |
+
"learning_rate": 3.408778625954198e-05,
|
1273 |
+
"loss": 0.5393,
|
1274 |
+
"step": 16300
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 29.08,
|
1278 |
+
"learning_rate": 3.380152671755725e-05,
|
1279 |
+
"loss": 0.513,
|
1280 |
+
"step": 16400
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 29.26,
|
1284 |
+
"learning_rate": 3.351526717557251e-05,
|
1285 |
+
"loss": 0.512,
|
1286 |
+
"step": 16500
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 29.26,
|
1290 |
+
"eval_loss": 0.10623880475759506,
|
1291 |
+
"eval_runtime": 31.0174,
|
1292 |
+
"eval_samples_per_second": 5.739,
|
1293 |
+
"eval_steps_per_second": 1.934,
|
1294 |
+
"eval_wer": 0.11555256970104132,
|
1295 |
+
"step": 16500
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 29.43,
|
1299 |
+
"learning_rate": 3.322900763358778e-05,
|
1300 |
+
"loss": 0.5258,
|
1301 |
+
"step": 16600
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 29.61,
|
1305 |
+
"learning_rate": 3.294274809160305e-05,
|
1306 |
+
"loss": 0.5366,
|
1307 |
+
"step": 16700
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 29.79,
|
1311 |
+
"learning_rate": 3.2656488549618316e-05,
|
1312 |
+
"loss": 0.515,
|
1313 |
+
"step": 16800
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 29.96,
|
1317 |
+
"learning_rate": 3.2370229007633586e-05,
|
1318 |
+
"loss": 0.5246,
|
1319 |
+
"step": 16900
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 30.14,
|
1323 |
+
"learning_rate": 3.208396946564885e-05,
|
1324 |
+
"loss": 0.5082,
|
1325 |
+
"step": 17000
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 30.14,
|
1329 |
+
"eval_loss": 0.10452543944120407,
|
1330 |
+
"eval_runtime": 30.9393,
|
1331 |
+
"eval_samples_per_second": 5.753,
|
1332 |
+
"eval_steps_per_second": 1.939,
|
1333 |
+
"eval_wer": 0.11353711790393013,
|
1334 |
+
"step": 17000
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 30.32,
|
1338 |
+
"learning_rate": 3.179770992366412e-05,
|
1339 |
+
"loss": 0.5029,
|
1340 |
+
"step": 17100
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 30.5,
|
1344 |
+
"learning_rate": 3.151431297709923e-05,
|
1345 |
+
"loss": 0.5219,
|
1346 |
+
"step": 17200
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 30.67,
|
1350 |
+
"learning_rate": 3.12280534351145e-05,
|
1351 |
+
"loss": 0.5235,
|
1352 |
+
"step": 17300
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 30.85,
|
1356 |
+
"learning_rate": 3.0941793893129764e-05,
|
1357 |
+
"loss": 0.5141,
|
1358 |
+
"step": 17400
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 31.03,
|
1362 |
+
"learning_rate": 3.0655534351145035e-05,
|
1363 |
+
"loss": 0.5193,
|
1364 |
+
"step": 17500
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 31.03,
|
1368 |
+
"eval_loss": 0.10911107808351517,
|
1369 |
+
"eval_runtime": 30.9608,
|
1370 |
+
"eval_samples_per_second": 5.749,
|
1371 |
+
"eval_steps_per_second": 1.938,
|
1372 |
+
"eval_wer": 0.11454484380248572,
|
1373 |
+
"step": 17500
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 31.21,
|
1377 |
+
"learning_rate": 3.0369274809160305e-05,
|
1378 |
+
"loss": 0.5038,
|
1379 |
+
"step": 17600
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 31.38,
|
1383 |
+
"learning_rate": 3.008301526717557e-05,
|
1384 |
+
"loss": 0.5086,
|
1385 |
+
"step": 17700
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 31.56,
|
1389 |
+
"learning_rate": 2.979675572519084e-05,
|
1390 |
+
"loss": 0.5001,
|
1391 |
+
"step": 17800
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 31.74,
|
1395 |
+
"learning_rate": 2.9510496183206105e-05,
|
1396 |
+
"loss": 0.5206,
|
1397 |
+
"step": 17900
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 31.91,
|
1401 |
+
"learning_rate": 2.9224236641221372e-05,
|
1402 |
+
"loss": 0.5129,
|
1403 |
+
"step": 18000
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 31.91,
|
1407 |
+
"eval_loss": 0.10398419201374054,
|
1408 |
+
"eval_runtime": 30.9924,
|
1409 |
+
"eval_samples_per_second": 5.743,
|
1410 |
+
"eval_steps_per_second": 1.936,
|
1411 |
+
"eval_wer": 0.10883439704400404,
|
1412 |
+
"step": 18000
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 32.09,
|
1416 |
+
"learning_rate": 2.893797709923664e-05,
|
1417 |
+
"loss": 0.5105,
|
1418 |
+
"step": 18100
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 32.27,
|
1422 |
+
"learning_rate": 2.8651717557251906e-05,
|
1423 |
+
"loss": 0.5062,
|
1424 |
+
"step": 18200
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 32.45,
|
1428 |
+
"learning_rate": 2.8365458015267172e-05,
|
1429 |
+
"loss": 0.5021,
|
1430 |
+
"step": 18300
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 32.62,
|
1434 |
+
"learning_rate": 2.807919847328244e-05,
|
1435 |
+
"loss": 0.5122,
|
1436 |
+
"step": 18400
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 32.8,
|
1440 |
+
"learning_rate": 2.779293893129771e-05,
|
1441 |
+
"loss": 0.5126,
|
1442 |
+
"step": 18500
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 32.8,
|
1446 |
+
"eval_loss": 0.10847991704940796,
|
1447 |
+
"eval_runtime": 30.8721,
|
1448 |
+
"eval_samples_per_second": 5.766,
|
1449 |
+
"eval_steps_per_second": 1.944,
|
1450 |
+
"eval_wer": 0.11689620423244877,
|
1451 |
+
"step": 18500
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 32.98,
|
1455 |
+
"learning_rate": 2.7506679389312976e-05,
|
1456 |
+
"loss": 0.5179,
|
1457 |
+
"step": 18600
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"epoch": 33.16,
|
1461 |
+
"learning_rate": 2.7220419847328243e-05,
|
1462 |
+
"loss": 0.5049,
|
1463 |
+
"step": 18700
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 33.33,
|
1467 |
+
"learning_rate": 2.693416030534351e-05,
|
1468 |
+
"loss": 0.5173,
|
1469 |
+
"step": 18800
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 33.51,
|
1473 |
+
"learning_rate": 2.6647900763358777e-05,
|
1474 |
+
"loss": 0.5115,
|
1475 |
+
"step": 18900
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 33.69,
|
1479 |
+
"learning_rate": 2.6361641221374043e-05,
|
1480 |
+
"loss": 0.496,
|
1481 |
+
"step": 19000
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 33.69,
|
1485 |
+
"eval_loss": 0.10698471963405609,
|
1486 |
+
"eval_runtime": 31.005,
|
1487 |
+
"eval_samples_per_second": 5.741,
|
1488 |
+
"eval_steps_per_second": 1.935,
|
1489 |
+
"eval_wer": 0.11656029559959691,
|
1490 |
+
"step": 19000
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 33.86,
|
1494 |
+
"learning_rate": 2.607538167938931e-05,
|
1495 |
+
"loss": 0.4938,
|
1496 |
+
"step": 19100
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 34.04,
|
1500 |
+
"learning_rate": 2.5789122137404577e-05,
|
1501 |
+
"loss": 0.5128,
|
1502 |
+
"step": 19200
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 34.22,
|
1506 |
+
"learning_rate": 2.550572519083969e-05,
|
1507 |
+
"loss": 0.497,
|
1508 |
+
"step": 19300
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 34.4,
|
1512 |
+
"learning_rate": 2.521946564885496e-05,
|
1513 |
+
"loss": 0.4879,
|
1514 |
+
"step": 19400
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 34.57,
|
1518 |
+
"learning_rate": 2.493320610687023e-05,
|
1519 |
+
"loss": 0.5017,
|
1520 |
+
"step": 19500
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 34.57,
|
1524 |
+
"eval_loss": 0.11190272867679596,
|
1525 |
+
"eval_runtime": 30.8238,
|
1526 |
+
"eval_samples_per_second": 5.775,
|
1527 |
+
"eval_steps_per_second": 1.947,
|
1528 |
+
"eval_wer": 0.11622438696674504,
|
1529 |
+
"step": 19500
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 34.75,
|
1533 |
+
"learning_rate": 2.4646946564885495e-05,
|
1534 |
+
"loss": 0.4994,
|
1535 |
+
"step": 19600
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 34.93,
|
1539 |
+
"learning_rate": 2.436354961832061e-05,
|
1540 |
+
"loss": 0.4973,
|
1541 |
+
"step": 19700
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 35.11,
|
1545 |
+
"learning_rate": 2.4077290076335876e-05,
|
1546 |
+
"loss": 0.5012,
|
1547 |
+
"step": 19800
|
1548 |
+
},
|
1549 |
+
{
|
1550 |
+
"epoch": 35.28,
|
1551 |
+
"learning_rate": 2.3791030534351143e-05,
|
1552 |
+
"loss": 0.4889,
|
1553 |
+
"step": 19900
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 35.46,
|
1557 |
+
"learning_rate": 2.350477099236641e-05,
|
1558 |
+
"loss": 0.4808,
|
1559 |
+
"step": 20000
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 35.46,
|
1563 |
+
"eval_loss": 0.11005562543869019,
|
1564 |
+
"eval_runtime": 31.0411,
|
1565 |
+
"eval_samples_per_second": 5.734,
|
1566 |
+
"eval_steps_per_second": 1.933,
|
1567 |
+
"eval_wer": 0.113873026536782,
|
1568 |
+
"step": 20000
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 35.64,
|
1572 |
+
"learning_rate": 2.3218511450381677e-05,
|
1573 |
+
"loss": 0.4984,
|
1574 |
+
"step": 20100
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 35.82,
|
1578 |
+
"learning_rate": 2.2932251908396944e-05,
|
1579 |
+
"loss": 0.4929,
|
1580 |
+
"step": 20200
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 35.99,
|
1584 |
+
"learning_rate": 2.2645992366412214e-05,
|
1585 |
+
"loss": 0.4861,
|
1586 |
+
"step": 20300
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 36.17,
|
1590 |
+
"learning_rate": 2.235973282442748e-05,
|
1591 |
+
"loss": 0.506,
|
1592 |
+
"step": 20400
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 36.35,
|
1596 |
+
"learning_rate": 2.2073473282442747e-05,
|
1597 |
+
"loss": 0.4939,
|
1598 |
+
"step": 20500
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 36.35,
|
1602 |
+
"eval_loss": 0.10813739150762558,
|
1603 |
+
"eval_runtime": 31.0724,
|
1604 |
+
"eval_samples_per_second": 5.729,
|
1605 |
+
"eval_steps_per_second": 1.931,
|
1606 |
+
"eval_wer": 0.11252939200537454,
|
1607 |
+
"step": 20500
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"epoch": 36.52,
|
1611 |
+
"learning_rate": 2.1787213740458014e-05,
|
1612 |
+
"loss": 0.4789,
|
1613 |
+
"step": 20600
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 36.7,
|
1617 |
+
"learning_rate": 2.150095419847328e-05,
|
1618 |
+
"loss": 0.4904,
|
1619 |
+
"step": 20700
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 36.88,
|
1623 |
+
"learning_rate": 2.1214694656488548e-05,
|
1624 |
+
"loss": 0.4916,
|
1625 |
+
"step": 20800
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"epoch": 37.06,
|
1629 |
+
"learning_rate": 2.0928435114503815e-05,
|
1630 |
+
"loss": 0.487,
|
1631 |
+
"step": 20900
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 37.23,
|
1635 |
+
"learning_rate": 2.064217557251908e-05,
|
1636 |
+
"loss": 0.4738,
|
1637 |
+
"step": 21000
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 37.23,
|
1641 |
+
"eval_loss": 0.10911141335964203,
|
1642 |
+
"eval_runtime": 31.0688,
|
1643 |
+
"eval_samples_per_second": 5.729,
|
1644 |
+
"eval_steps_per_second": 1.931,
|
1645 |
+
"eval_wer": 0.10984212294255963,
|
1646 |
+
"step": 21000
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 37.41,
|
1650 |
+
"learning_rate": 2.0355916030534352e-05,
|
1651 |
+
"loss": 0.4757,
|
1652 |
+
"step": 21100
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 37.59,
|
1656 |
+
"learning_rate": 2.006965648854962e-05,
|
1657 |
+
"loss": 0.4752,
|
1658 |
+
"step": 21200
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 37.77,
|
1662 |
+
"learning_rate": 1.9783396946564885e-05,
|
1663 |
+
"loss": 0.4939,
|
1664 |
+
"step": 21300
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 37.94,
|
1668 |
+
"learning_rate": 1.9497137404580152e-05,
|
1669 |
+
"loss": 0.4673,
|
1670 |
+
"step": 21400
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 38.12,
|
1674 |
+
"learning_rate": 1.921087786259542e-05,
|
1675 |
+
"loss": 0.4978,
|
1676 |
+
"step": 21500
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 38.12,
|
1680 |
+
"eval_loss": 0.10570317506790161,
|
1681 |
+
"eval_runtime": 31.0697,
|
1682 |
+
"eval_samples_per_second": 5.729,
|
1683 |
+
"eval_steps_per_second": 1.931,
|
1684 |
+
"eval_wer": 0.1091703056768559,
|
1685 |
+
"step": 21500
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 38.3,
|
1689 |
+
"learning_rate": 1.8924618320610686e-05,
|
1690 |
+
"loss": 0.4829,
|
1691 |
+
"step": 21600
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 38.47,
|
1695 |
+
"learning_rate": 1.8638358778625953e-05,
|
1696 |
+
"loss": 0.4857,
|
1697 |
+
"step": 21700
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 38.65,
|
1701 |
+
"learning_rate": 1.835209923664122e-05,
|
1702 |
+
"loss": 0.4618,
|
1703 |
+
"step": 21800
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 38.83,
|
1707 |
+
"learning_rate": 1.8065839694656486e-05,
|
1708 |
+
"loss": 0.4831,
|
1709 |
+
"step": 21900
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 39.01,
|
1713 |
+
"learning_rate": 1.77824427480916e-05,
|
1714 |
+
"loss": 0.4972,
|
1715 |
+
"step": 22000
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 39.01,
|
1719 |
+
"eval_loss": 0.10742757469415665,
|
1720 |
+
"eval_runtime": 31.1659,
|
1721 |
+
"eval_samples_per_second": 5.711,
|
1722 |
+
"eval_steps_per_second": 1.925,
|
1723 |
+
"eval_wer": 0.11051394020826336,
|
1724 |
+
"step": 22000
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 39.18,
|
1728 |
+
"learning_rate": 1.7496183206106867e-05,
|
1729 |
+
"loss": 0.4974,
|
1730 |
+
"step": 22100
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 39.36,
|
1734 |
+
"learning_rate": 1.7209923664122138e-05,
|
1735 |
+
"loss": 0.4778,
|
1736 |
+
"step": 22200
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 39.54,
|
1740 |
+
"learning_rate": 1.6923664122137404e-05,
|
1741 |
+
"loss": 0.4863,
|
1742 |
+
"step": 22300
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 39.72,
|
1746 |
+
"learning_rate": 1.663740458015267e-05,
|
1747 |
+
"loss": 0.4815,
|
1748 |
+
"step": 22400
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 39.89,
|
1752 |
+
"learning_rate": 1.6351145038167938e-05,
|
1753 |
+
"loss": 0.4773,
|
1754 |
+
"step": 22500
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 39.89,
|
1758 |
+
"eval_loss": 0.10622948408126831,
|
1759 |
+
"eval_runtime": 31.5999,
|
1760 |
+
"eval_samples_per_second": 5.633,
|
1761 |
+
"eval_steps_per_second": 1.899,
|
1762 |
+
"eval_wer": 0.11084984884111522,
|
1763 |
+
"step": 22500
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 40.07,
|
1767 |
+
"learning_rate": 1.6064885496183205e-05,
|
1768 |
+
"loss": 0.4808,
|
1769 |
+
"step": 22600
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 40.25,
|
1773 |
+
"learning_rate": 1.577862595419847e-05,
|
1774 |
+
"loss": 0.4804,
|
1775 |
+
"step": 22700
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 40.43,
|
1779 |
+
"learning_rate": 1.549236641221374e-05,
|
1780 |
+
"loss": 0.4796,
|
1781 |
+
"step": 22800
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 40.6,
|
1785 |
+
"learning_rate": 1.5206106870229005e-05,
|
1786 |
+
"loss": 0.4866,
|
1787 |
+
"step": 22900
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 40.78,
|
1791 |
+
"learning_rate": 1.4919847328244272e-05,
|
1792 |
+
"loss": 0.4741,
|
1793 |
+
"step": 23000
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 40.78,
|
1797 |
+
"eval_loss": 0.10567349940538406,
|
1798 |
+
"eval_runtime": 31.2551,
|
1799 |
+
"eval_samples_per_second": 5.695,
|
1800 |
+
"eval_steps_per_second": 1.92,
|
1801 |
+
"eval_wer": 0.10849848841115217,
|
1802 |
+
"step": 23000
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 40.96,
|
1806 |
+
"learning_rate": 1.4633587786259542e-05,
|
1807 |
+
"loss": 0.4976,
|
1808 |
+
"step": 23100
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 41.13,
|
1812 |
+
"learning_rate": 1.4347328244274809e-05,
|
1813 |
+
"loss": 0.4811,
|
1814 |
+
"step": 23200
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 41.31,
|
1818 |
+
"learning_rate": 1.4061068702290076e-05,
|
1819 |
+
"loss": 0.4904,
|
1820 |
+
"step": 23300
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 41.49,
|
1824 |
+
"learning_rate": 1.3774809160305341e-05,
|
1825 |
+
"loss": 0.4658,
|
1826 |
+
"step": 23400
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 41.67,
|
1830 |
+
"learning_rate": 1.3488549618320608e-05,
|
1831 |
+
"loss": 0.4776,
|
1832 |
+
"step": 23500
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 41.67,
|
1836 |
+
"eval_loss": 0.10771991312503815,
|
1837 |
+
"eval_runtime": 31.4029,
|
1838 |
+
"eval_samples_per_second": 5.668,
|
1839 |
+
"eval_steps_per_second": 1.911,
|
1840 |
+
"eval_wer": 0.10849848841115217,
|
1841 |
+
"step": 23500
|
1842 |
+
},
|
1843 |
+
{
|
1844 |
+
"epoch": 41.84,
|
1845 |
+
"learning_rate": 1.3202290076335878e-05,
|
1846 |
+
"loss": 0.4745,
|
1847 |
+
"step": 23600
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 42.02,
|
1851 |
+
"learning_rate": 1.2916030534351145e-05,
|
1852 |
+
"loss": 0.4746,
|
1853 |
+
"step": 23700
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 42.2,
|
1857 |
+
"learning_rate": 1.262977099236641e-05,
|
1858 |
+
"loss": 0.4858,
|
1859 |
+
"step": 23800
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 42.38,
|
1863 |
+
"learning_rate": 1.2343511450381677e-05,
|
1864 |
+
"loss": 0.4687,
|
1865 |
+
"step": 23900
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 42.55,
|
1869 |
+
"learning_rate": 1.2057251908396947e-05,
|
1870 |
+
"loss": 0.4637,
|
1871 |
+
"step": 24000
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 42.55,
|
1875 |
+
"eval_loss": 0.10607700049877167,
|
1876 |
+
"eval_runtime": 31.045,
|
1877 |
+
"eval_samples_per_second": 5.734,
|
1878 |
+
"eval_steps_per_second": 1.933,
|
1879 |
+
"eval_wer": 0.10950621430970776,
|
1880 |
+
"step": 24000
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 42.73,
|
1884 |
+
"learning_rate": 1.1770992366412214e-05,
|
1885 |
+
"loss": 0.4462,
|
1886 |
+
"step": 24100
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 42.91,
|
1890 |
+
"learning_rate": 1.1484732824427479e-05,
|
1891 |
+
"loss": 0.4815,
|
1892 |
+
"step": 24200
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 43.09,
|
1896 |
+
"learning_rate": 1.1198473282442746e-05,
|
1897 |
+
"loss": 0.461,
|
1898 |
+
"step": 24300
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 43.26,
|
1902 |
+
"learning_rate": 1.0912213740458016e-05,
|
1903 |
+
"loss": 0.4594,
|
1904 |
+
"step": 24400
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 43.44,
|
1908 |
+
"learning_rate": 1.0625954198473283e-05,
|
1909 |
+
"loss": 0.4853,
|
1910 |
+
"step": 24500
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 43.44,
|
1914 |
+
"eval_loss": 0.10806521028280258,
|
1915 |
+
"eval_runtime": 31.4451,
|
1916 |
+
"eval_samples_per_second": 5.661,
|
1917 |
+
"eval_steps_per_second": 1.908,
|
1918 |
+
"eval_wer": 0.10749076251259658,
|
1919 |
+
"step": 24500
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"epoch": 43.62,
|
1923 |
+
"learning_rate": 1.033969465648855e-05,
|
1924 |
+
"loss": 0.4747,
|
1925 |
+
"step": 24600
|
1926 |
+
},
|
1927 |
+
{
|
1928 |
+
"epoch": 43.79,
|
1929 |
+
"learning_rate": 1.0053435114503815e-05,
|
1930 |
+
"loss": 0.4649,
|
1931 |
+
"step": 24700
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 43.97,
|
1935 |
+
"learning_rate": 9.767175572519081e-06,
|
1936 |
+
"loss": 0.471,
|
1937 |
+
"step": 24800
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 44.15,
|
1941 |
+
"learning_rate": 9.480916030534352e-06,
|
1942 |
+
"loss": 0.453,
|
1943 |
+
"step": 24900
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 44.33,
|
1947 |
+
"learning_rate": 9.194656488549618e-06,
|
1948 |
+
"loss": 0.4602,
|
1949 |
+
"step": 25000
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 44.33,
|
1953 |
+
"eval_loss": 0.1075613871216774,
|
1954 |
+
"eval_runtime": 31.217,
|
1955 |
+
"eval_samples_per_second": 5.702,
|
1956 |
+
"eval_steps_per_second": 1.922,
|
1957 |
+
"eval_wer": 0.10849848841115217,
|
1958 |
+
"step": 25000
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 44.5,
|
1962 |
+
"learning_rate": 8.908396946564884e-06,
|
1963 |
+
"loss": 0.4579,
|
1964 |
+
"step": 25100
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 44.68,
|
1968 |
+
"learning_rate": 8.622137404580152e-06,
|
1969 |
+
"loss": 0.4752,
|
1970 |
+
"step": 25200
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 44.86,
|
1974 |
+
"learning_rate": 8.335877862595419e-06,
|
1975 |
+
"loss": 0.4708,
|
1976 |
+
"step": 25300
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 45.04,
|
1980 |
+
"learning_rate": 8.049618320610687e-06,
|
1981 |
+
"loss": 0.4613,
|
1982 |
+
"step": 25400
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 45.21,
|
1986 |
+
"learning_rate": 7.763358778625954e-06,
|
1987 |
+
"loss": 0.4667,
|
1988 |
+
"step": 25500
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 45.21,
|
1992 |
+
"eval_loss": 0.1077902689576149,
|
1993 |
+
"eval_runtime": 31.0572,
|
1994 |
+
"eval_samples_per_second": 5.731,
|
1995 |
+
"eval_steps_per_second": 1.932,
|
1996 |
+
"eval_wer": 0.10782667114544844,
|
1997 |
+
"step": 25500
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 45.39,
|
2001 |
+
"learning_rate": 7.477099236641221e-06,
|
2002 |
+
"loss": 0.4709,
|
2003 |
+
"step": 25600
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 45.57,
|
2007 |
+
"learning_rate": 7.190839694656488e-06,
|
2008 |
+
"loss": 0.4523,
|
2009 |
+
"step": 25700
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 45.74,
|
2013 |
+
"learning_rate": 6.9045801526717555e-06,
|
2014 |
+
"loss": 0.4537,
|
2015 |
+
"step": 25800
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 45.92,
|
2019 |
+
"learning_rate": 6.62118320610687e-06,
|
2020 |
+
"loss": 0.4642,
|
2021 |
+
"step": 25900
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 46.1,
|
2025 |
+
"learning_rate": 6.334923664122137e-06,
|
2026 |
+
"loss": 0.4484,
|
2027 |
+
"step": 26000
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"epoch": 46.1,
|
2031 |
+
"eval_loss": 0.10564640909433365,
|
2032 |
+
"eval_runtime": 31.5659,
|
2033 |
+
"eval_samples_per_second": 5.639,
|
2034 |
+
"eval_steps_per_second": 1.901,
|
2035 |
+
"eval_wer": 0.10816257977830031,
|
2036 |
+
"step": 26000
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 46.28,
|
2040 |
+
"learning_rate": 6.048664122137404e-06,
|
2041 |
+
"loss": 0.4505,
|
2042 |
+
"step": 26100
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 46.45,
|
2046 |
+
"learning_rate": 5.762404580152671e-06,
|
2047 |
+
"loss": 0.4758,
|
2048 |
+
"step": 26200
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 46.63,
|
2052 |
+
"learning_rate": 5.476145038167939e-06,
|
2053 |
+
"loss": 0.4528,
|
2054 |
+
"step": 26300
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 46.81,
|
2058 |
+
"learning_rate": 5.1898854961832056e-06,
|
2059 |
+
"loss": 0.4579,
|
2060 |
+
"step": 26400
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 46.99,
|
2064 |
+
"learning_rate": 4.903625954198473e-06,
|
2065 |
+
"loss": 0.4601,
|
2066 |
+
"step": 26500
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 46.99,
|
2070 |
+
"eval_loss": 0.10663167387247086,
|
2071 |
+
"eval_runtime": 31.3245,
|
2072 |
+
"eval_samples_per_second": 5.682,
|
2073 |
+
"eval_steps_per_second": 1.915,
|
2074 |
+
"eval_wer": 0.10782667114544844,
|
2075 |
+
"step": 26500
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 47.16,
|
2079 |
+
"learning_rate": 4.61736641221374e-06,
|
2080 |
+
"loss": 0.4634,
|
2081 |
+
"step": 26600
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 47.34,
|
2085 |
+
"learning_rate": 4.331106870229007e-06,
|
2086 |
+
"loss": 0.4603,
|
2087 |
+
"step": 26700
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 47.52,
|
2091 |
+
"learning_rate": 4.0448473282442745e-06,
|
2092 |
+
"loss": 0.4653,
|
2093 |
+
"step": 26800
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 47.69,
|
2097 |
+
"learning_rate": 3.7585877862595418e-06,
|
2098 |
+
"loss": 0.4619,
|
2099 |
+
"step": 26900
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 47.87,
|
2103 |
+
"learning_rate": 3.472328244274809e-06,
|
2104 |
+
"loss": 0.4691,
|
2105 |
+
"step": 27000
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 47.87,
|
2109 |
+
"eval_loss": 0.10679604858160019,
|
2110 |
+
"eval_runtime": 31.1673,
|
2111 |
+
"eval_samples_per_second": 5.711,
|
2112 |
+
"eval_steps_per_second": 1.925,
|
2113 |
+
"eval_wer": 0.10849848841115217,
|
2114 |
+
"step": 27000
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 48.05,
|
2118 |
+
"learning_rate": 3.1860687022900762e-06,
|
2119 |
+
"loss": 0.4582,
|
2120 |
+
"step": 27100
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 48.23,
|
2124 |
+
"learning_rate": 2.8998091603053435e-06,
|
2125 |
+
"loss": 0.4439,
|
2126 |
+
"step": 27200
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 48.4,
|
2130 |
+
"learning_rate": 2.6135496183206107e-06,
|
2131 |
+
"loss": 0.4617,
|
2132 |
+
"step": 27300
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 48.58,
|
2136 |
+
"learning_rate": 2.3272900763358775e-06,
|
2137 |
+
"loss": 0.4538,
|
2138 |
+
"step": 27400
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 48.76,
|
2142 |
+
"learning_rate": 2.0410305343511447e-06,
|
2143 |
+
"loss": 0.4457,
|
2144 |
+
"step": 27500
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 48.76,
|
2148 |
+
"eval_loss": 0.10663049668073654,
|
2149 |
+
"eval_runtime": 31.2143,
|
2150 |
+
"eval_samples_per_second": 5.703,
|
2151 |
+
"eval_steps_per_second": 1.922,
|
2152 |
+
"eval_wer": 0.10782667114544844,
|
2153 |
+
"step": 27500
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 48.94,
|
2157 |
+
"learning_rate": 1.7547709923664122e-06,
|
2158 |
+
"loss": 0.4766,
|
2159 |
+
"step": 27600
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 49.11,
|
2163 |
+
"learning_rate": 1.4685114503816792e-06,
|
2164 |
+
"loss": 0.4576,
|
2165 |
+
"step": 27700
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 49.29,
|
2169 |
+
"learning_rate": 1.185114503816794e-06,
|
2170 |
+
"loss": 0.4616,
|
2171 |
+
"step": 27800
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 49.47,
|
2175 |
+
"learning_rate": 8.98854961832061e-07,
|
2176 |
+
"loss": 0.4588,
|
2177 |
+
"step": 27900
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 49.65,
|
2181 |
+
"learning_rate": 6.125954198473282e-07,
|
2182 |
+
"loss": 0.475,
|
2183 |
+
"step": 28000
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 49.65,
|
2187 |
+
"eval_loss": 0.1059938296675682,
|
2188 |
+
"eval_runtime": 32.0006,
|
2189 |
+
"eval_samples_per_second": 5.562,
|
2190 |
+
"eval_steps_per_second": 1.875,
|
2191 |
+
"eval_wer": 0.10816257977830031,
|
2192 |
+
"step": 28000
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 49.82,
|
2196 |
+
"learning_rate": 3.263358778625954e-07,
|
2197 |
+
"loss": 0.4622,
|
2198 |
+
"step": 28100
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 50.0,
|
2202 |
+
"learning_rate": 4.0076335877862596e-08,
|
2203 |
+
"loss": 0.4567,
|
2204 |
+
"step": 28200
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 50.0,
|
2208 |
+
"step": 28200,
|
2209 |
+
"total_flos": 6.992186583697227e+19,
|
2210 |
+
"train_loss": 0.6889870901987062,
|
2211 |
+
"train_runtime": 132713.9902,
|
2212 |
+
"train_samples_per_second": 2.551,
|
2213 |
+
"train_steps_per_second": 0.212
|
2214 |
+
}
|
2215 |
+
],
|
2216 |
+
"max_steps": 28200,
|
2217 |
+
"num_train_epochs": 50,
|
2218 |
+
"total_flos": 6.992186583697227e+19,
|
2219 |
+
"trial_name": null,
|
2220 |
+
"trial_params": null
|
2221 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95b1c12bb3e43e845c3fafc74da0962a2f160b7c3a7e2ee8805288861ea2bbfe
|
3 |
+
size 3183
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"&": 1, "'": 2, "(": 3, ")": 4, "/": 5, "0": 6, "1": 7, "2": 8, "3": 9, "4": 10, "5": 11, "7": 12, "9": 13, "a": 14, "b": 15, "c": 16, "d": 17, "e": 18, "f": 19, "g": 20, "h": 21, "i": 22, "j": 23, "k": 24, "l": 25, "m": 26, "n": 27, "o": 28, "p": 29, "q": 30, "r": 31, "s": 32, "t": 33, "u": 34, "v": 35, "w": 36, "x": 37, "y": 38, "z": 39, "ß": 40, "à": 41, "â": 42, "ä": 43, "ç": 44, "è": 45, "é": 46, "ê": 47, "ë": 48, "î": 49, "ï": 50, "ô": 51, "ö": 52, "û": 53, "ü": 54, "|": 0, "[UNK]": 55, "[PAD]": 56}
|