Lauther commited on
Commit
d431cde
·
verified ·
1 Parent(s): 145848d

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,660 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:11165
8
+ - loss:ContrastiveLoss
9
+ base_model: intfloat/multilingual-e5-large-instruct
10
+ widget:
11
+ - source_sentence: PTE CRUZEIRO B
12
+ sentences:
13
+ - 'What is an Installation?
14
+
15
+ An Installation is a physical or operational site where measurement systems and
16
+ equipment are deployed. These locations can include processing plants, industrial
17
+ facilities, or other operational sites. Installations serve as key points for
18
+ monitoring and managing measurement processes. Examples include "Cexis" or "Processing
19
+ Plant XYZ."'
20
+ - 'What is a Measurement Unit?
21
+
22
+ A Measurement Unit defines the standard for quantifying a physical magnitude (e.g.,
23
+ temperature, pressure, volume). It establishes a consistent reference for interpreting
24
+ values recorded in a measurement system.
25
+
26
+
27
+ Each measurement unit is associated with a specific magnitude, ensuring that values
28
+ are correctly interpreted within their context. For example:
29
+
30
+
31
+ - °C (Celsius) → Used for temperature
32
+
33
+ - psi (pounds per square inch) → Used for pressure
34
+
35
+ - m³ (cubic meters) → Used for volume
36
+
37
+ Measurement units are essential for maintaining consistency across recorded data,
38
+ ensuring comparability, and enabling accurate calculations within measurement
39
+ systems.'
40
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
41
+ \ and reliability of results obtained from equipment or measurement systems. It\
42
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
43
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
44
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
45
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
46
+ \ device or obtained from the **equipment** manufacturer's manual.\n - This\
47
+ \ uncertainty serves as a starting point for further calculations related to the\
48
+ \ equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the\
49
+ \ uncertainty calculated for the overall flow measurement.\n - It depends on\
50
+ \ the uncertainties of the individual variables (magnitudes) and represents the\
51
+ \ combined margin of error for the entire system.\n\nKey points:\n- The uncertainties\
52
+ \ of magnitudes (variables) are the foundation for calculating the uncertainty\
53
+ \ of the measurement system. Think of them as the \"building blocks.\"\n- Do not\
54
+ \ confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**:\
55
+ \ Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
56
+ \ of the measurement system**: Specific to the overall flow measurement."
57
+ - source_sentence: ECOMP-VP-03116
58
+ sentences:
59
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
60
+ \ and reliability of results obtained from equipment or measurement systems. It\
61
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
62
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
63
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
64
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
65
+ \ device or obtained from the **equipment** manufacturer's manual.\n - This\
66
+ \ uncertainty serves as a starting point for further calculations related to the\
67
+ \ equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the\
68
+ \ uncertainty calculated for the overall flow measurement.\n - It depends on\
69
+ \ the uncertainties of the individual variables (magnitudes) and represents the\
70
+ \ combined margin of error for the entire system.\n\nKey points:\n- The uncertainties\
71
+ \ of magnitudes (variables) are the foundation for calculating the uncertainty\
72
+ \ of the measurement system. Think of them as the \"building blocks.\"\n- Do not\
73
+ \ confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**:\
74
+ \ Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
75
+ \ of the measurement system**: Specific to the overall flow measurement."
76
+ - 'What is a Calibration Record?
77
+
78
+ A Calibration Record documents the calibration process of a specific equipment
79
+ tag, ensuring that its measurements remain accurate and reliable. Calibration
80
+ is a critical process in maintaining measurement precision and compliance with
81
+ standards.
82
+
83
+
84
+ Key Aspects of a Calibration Record:
85
+
86
+ - Calibration Date: The exact date when the calibration was performed, crucial
87
+ for tracking maintenance schedules.
88
+
89
+ - Certification Number: A unique identifier for the calibration certificate, providing
90
+ traceability and verification of compliance.
91
+
92
+ - Range Values: The minimum and maximum measurement values covered during the
93
+ calibration process.
94
+
95
+ - Calibration Status: Indicates whether the calibration was approved or saved
96
+ for further review.
97
+
98
+ - Associated Units: Specifies the measurement units used in calibration (e.g.,
99
+ °C, psi).
100
+
101
+ - Associated Equipment Tag ID: Links the calibration record to a specific equipment
102
+ tag, ensuring traceability of measurement instruments.
103
+
104
+ Calibration records play a fundamental role in quality assurance, helping maintain
105
+ measurement integrity and regulatory compliance.'
106
+ - 'What are Flow Computer Types?
107
+
108
+ Flow computer types categorize different models of flow computers used in measurement
109
+ systems, such as OMNI, KROHNE, ROC, FC302, S600, FLOWBOSS, F407, F107, and ThermoFisher.
110
+ Each type is defined by its capabilities, functionalities, and applications, determining
111
+ how it processes measurement data, performs calculations, and enables real-time
112
+ monitoring. Understanding these types is essential for selecting the right equipment
113
+ to ensure precise flow measurement, system integration, and operational efficiency.'
114
+ - source_sentence: Resistencia
115
+ sentences:
116
+ - "What is an Uncertainty Curve Point?\nAn Uncertainty Curve Point represents a\
117
+ \ data point used to construct the uncertainty curve of a measurement system.\
118
+ \ These curves help analyze how measurement uncertainty behaves under different\
119
+ \ flow rate conditions, ensuring accuracy and reliability in uncertainty assessments.\n\
120
+ \nKey Aspects of an Uncertainty Curve Point:\n- Uncertainty File ID: Links the\
121
+ \ point to the specific uncertainty dataset, ensuring traceability.\nEquipment\
122
+ \ Tag ID: Identifies the equipment associated with the uncertainty measurement,\
123
+ \ crucial for system validation.\n- Uncertainty Points: Represent a list uncertainty\
124
+ \ values recorded at specific conditions, forming part of the overall uncertainty\
125
+ \ curve. Do not confuse this uncertainty points with the calculated uncertainty.\
126
+ \ \n- Flow Rate Points: Corresponding flow rate values at which the uncertainty\
127
+ \ was measured, essential for evaluating performance under varying operational\
128
+ \ conditions.\nThese points are fundamental for generating uncertainty curves,\
129
+ \ which are used in calibration, validation, and compliance assessments to ensure\
130
+ \ measurement reliability in industrial processes.\"\n\n**IMPORTANT**: Do not\
131
+ \ confuse the two types of **Points**:\n - **Uncertainty Curve Point**: Specific\
132
+ \ to a measurement system uncertainty or uncertainty simulation or uncertainty\
133
+ \ curve.\n - **Calibration Point**: Specific to the calibration.\n - **Uncertainty\
134
+ \ values**: Do not confuse these uncertainty points with the single calculated\
135
+ \ uncertainty."
136
+ - "What is uncertainty?\nUncertainty is a measure of confidence in the precision\
137
+ \ and reliability of results obtained from equipment or measurement systems. It\
138
+ \ quantifies the potential error or margin of error in measurements.\n\nTypes\
139
+ \ of uncertainty:\nThere are two main types of uncertainty:\n1. Uncertainty of\
140
+ \ magnitudes (variables):\n - Refers to the uncertainty of specific variables,\
141
+ \ such as temperature or pressure.\n - It is calculated after calibrating a\
142
+ \ device or obtained from the **equipment** manufacturer's manual.\n - This\
143
+ \ uncertainty serves as a starting point for further calculations related to the\
144
+ \ equipment.\n\n2. Uncertainty of the measurement system:\n - Refers to the\
145
+ \ uncertainty calculated for the overall flow measurement.\n - It depends on\
146
+ \ the uncertainties of the individual variables (magnitudes) and represents the\
147
+ \ combined margin of error for the entire system.\n\nKey points:\n- The uncertainties\
148
+ \ of magnitudes (variables) are the foundation for calculating the uncertainty\
149
+ \ of the measurement system. Think of them as the \"building blocks.\"\n- Do not\
150
+ \ confuse the two types of uncertainty:\n - **Uncertainty of magnitudes/variables**:\
151
+ \ Specific to individual variables (e.g., temperature, pressure).\n - **Uncertainty\
152
+ \ of the measurement system**: Specific to the overall flow measurement."
153
+ - 'What is an Equipment Tag?
154
+
155
+ An Equipment Tag is a unique label string identifier assigned to equipment that
156
+ is actively installed and in use within a measurement system. It differentiates
157
+ between equipment in general (which may be in storage or inactive) and equipment
158
+ that is currently operational in a system.
159
+
160
+
161
+ Key Aspects of Equipment Tags:
162
+
163
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
164
+ in operation.
165
+
166
+ - Equipment ID: Links the tag to the corresponding equipment unit.
167
+
168
+ - Belonging Measurement System: Specifies which measurement system the tagged
169
+ equipment is part of.
170
+
171
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
172
+ aiding in organization and system integration.
173
+
174
+ The Equipment Tag is essential for tracking and managing operational equipment
175
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
176
+ - source_sentence: nitrogen composition
177
+ sentences:
178
+ - 'What is a Meter Stream?
179
+
180
+ A Meter Stream represents a measurement system configured within a flow computer.
181
+ It serves as the interface between the physical measurement system and the computational
182
+ processes that record and analyze flow data.
183
+
184
+
185
+ Key Aspects of a Meter Stream:
186
+
187
+ - Status: Indicates whether the meter stream is active or inactive.
188
+
189
+ - Measurement System Association: Links the meter stream to a specific measurement
190
+ system, ensuring that the data collected corresponds to a defined physical setup.
191
+
192
+ - Flow Computer Association: Identifies the flow computer responsible for managing
193
+ and recording the measurement system''s data.
194
+
195
+ Why is a Meter Stream Important?
196
+
197
+ A **meter stream** is a critical component in flow measurement, as it ensures
198
+ that the measurement system is correctly integrated into the flow computer for
199
+ accurate monitoring and reporting. Since each flow computer can handle multiple
200
+ meter streams, proper configuration is essential for maintaining data integrity
201
+ and traceability.'
202
+ - "What is a Measurement Type?\nMeasurement types define the classification of measurements\
203
+ \ used within a system based on their purpose and regulatory requirements. These\
204
+ \ types include **fiscal**, **appropriation**, **operational**, and **custody**\
205
+ \ measurements. \n\n- **Fiscal measurements** are used for tax and regulatory\
206
+ \ reporting, ensuring accurate financial transactions based on measured quantities.\
207
+ \ \n- **Appropriation measurements** track resource allocation and ownership\
208
+ \ distribution among stakeholders. \n- **Operational measurements** support real-time\
209
+ \ monitoring and process optimization within industrial operations. \n- **Custody\
210
+ \ measurements** are essential for legal and contractual transactions, ensuring\
211
+ \ precise handover of fluids between parties. \n\nThese classifications play\
212
+ \ a crucial role in compliance, financial accuracy, and operational efficiency\
213
+ \ across industries such as oil and gas, water management, and energy distribution.\
214
+ \ "
215
+ - 'What is a Meter Stream?
216
+
217
+ A Meter Stream represents a measurement system configured within a flow computer.
218
+ It serves as the interface between the physical measurement system and the computational
219
+ processes that record and analyze flow data.
220
+
221
+
222
+ Key Aspects of a Meter Stream:
223
+
224
+ - Status: Indicates whether the meter stream is active or inactive.
225
+
226
+ - Measurement System Association: Links the meter stream to a specific measurement
227
+ system, ensuring that the data collected corresponds to a defined physical setup.
228
+
229
+ - Flow Computer Association: Identifies the flow computer responsible for managing
230
+ and recording the measurement system''s data.
231
+
232
+ Why is a Meter Stream Important?
233
+
234
+ A **meter stream** is a critical component in flow measurement, as it ensures
235
+ that the measurement system is correctly integrated into the flow computer for
236
+ accurate monitoring and reporting. Since each flow computer can handle multiple
237
+ meter streams, proper configuration is essential for maintaining data integrity
238
+ and traceability.'
239
+ - source_sentence: PTE SUZANO
240
+ sentences:
241
+ - 'What are Flow Computer Types?
242
+
243
+ Flow computer types categorize different models of flow computers used in measurement
244
+ systems, such as OMNI, KROHNE, ROC, FC302, S600, FLOWBOSS, F407, F107, and ThermoFisher.
245
+ Each type is defined by its capabilities, functionalities, and applications, determining
246
+ how it processes measurement data, performs calculations, and enables real-time
247
+ monitoring. Understanding these types is essential for selecting the right equipment
248
+ to ensure precise flow measurement, system integration, and operational efficiency.'
249
+ - 'What is a flow computer?
250
+
251
+ A flow computer is a device used in measurement engineering. It collects analog
252
+ and digital data from flow meters and other sensors.
253
+
254
+
255
+ Key features of a flow computer:
256
+
257
+ - It has a unique name, firmware version, and manufacturer information.
258
+
259
+ - It is designed to record and process data such as temperature, pressure, and
260
+ fluid volume (for gases or oils).'
261
+ - 'What is a Calibration Record?
262
+
263
+ A Calibration Record documents the calibration process of a specific equipment
264
+ tag, ensuring that its measurements remain accurate and reliable. Calibration
265
+ is a critical process in maintaining measurement precision and compliance with
266
+ standards.
267
+
268
+
269
+ Key Aspects of a Calibration Record:
270
+
271
+ - Calibration Date: The exact date when the calibration was performed, crucial
272
+ for tracking maintenance schedules.
273
+
274
+ - Certification Number: A unique identifier for the calibration certificate, providing
275
+ traceability and verification of compliance.
276
+
277
+ - Range Values: The minimum and maximum measurement values covered during the
278
+ calibration process.
279
+
280
+ - Calibration Status: Indicates whether the calibration was approved or saved
281
+ for further review.
282
+
283
+ - Associated Units: Specifies the measurement units used in calibration (e.g.,
284
+ °C, psi).
285
+
286
+ - Associated Equipment Tag ID: Links the calibration record to a specific equipment
287
+ tag, ensuring traceability of measurement instruments.
288
+
289
+ Calibration records play a fundamental role in quality assurance, helping maintain
290
+ measurement integrity and regulatory compliance.'
291
+ datasets:
292
+ - Lauther/d4-embeddings
293
+ pipeline_tag: sentence-similarity
294
+ library_name: sentence-transformers
295
+ ---
296
+
297
+ # SentenceTransformer based on intfloat/multilingual-e5-large-instruct
298
+
299
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the [d4-embeddings](https://huggingface.co/datasets/Lauther/d4-embeddings) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
300
+
301
+ ## Model Details
302
+
303
+ ### Model Description
304
+ - **Model Type:** Sentence Transformer
305
+ - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision 274baa43b0e13e37fafa6428dbc7938e62e5c439 -->
306
+ - **Maximum Sequence Length:** 512 tokens
307
+ - **Output Dimensionality:** 1024 dimensions
308
+ - **Similarity Function:** Cosine Similarity
309
+ - **Training Dataset:**
310
+ - [d4-embeddings](https://huggingface.co/datasets/Lauther/d4-embeddings)
311
+ <!-- - **Language:** Unknown -->
312
+ <!-- - **License:** Unknown -->
313
+
314
+ ### Model Sources
315
+
316
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
317
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
318
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
319
+
320
+ ### Full Model Architecture
321
+
322
+ ```
323
+ SentenceTransformer(
324
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
325
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
326
+ (2): Normalize()
327
+ )
328
+ ```
329
+
330
+ ## Usage
331
+
332
+ ### Direct Usage (Sentence Transformers)
333
+
334
+ First install the Sentence Transformers library:
335
+
336
+ ```bash
337
+ pip install -U sentence-transformers
338
+ ```
339
+
340
+ Then you can load this model and run inference.
341
+ ```python
342
+ from sentence_transformers import SentenceTransformer
343
+
344
+ # Download from the 🤗 Hub
345
+ model = SentenceTransformer("Lauther/d4-embeddings-v2.0")
346
+ # Run inference
347
+ sentences = [
348
+ 'PTE SUZANO',
349
+ 'What is a Calibration Record?\nA Calibration Record documents the calibration process of a specific equipment tag, ensuring that its measurements remain accurate and reliable. Calibration is a critical process in maintaining measurement precision and compliance with standards.\n\nKey Aspects of a Calibration Record:\n- Calibration Date: The exact date when the calibration was performed, crucial for tracking maintenance schedules.\n- Certification Number: A unique identifier for the calibration certificate, providing traceability and verification of compliance.\n- Range Values: The minimum and maximum measurement values covered during the calibration process.\n- Calibration Status: Indicates whether the calibration was approved or saved for further review.\n- Associated Units: Specifies the measurement units used in calibration (e.g., °C, psi).\n- Associated Equipment Tag ID: Links the calibration record to a specific equipment tag, ensuring traceability of measurement instruments.\nCalibration records play a fundamental role in quality assurance, helping maintain measurement integrity and regulatory compliance.',
350
+ 'What is a flow computer?\nA flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors.\n\nKey features of a flow computer:\n- It has a unique name, firmware version, and manufacturer information.\n- It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils).',
351
+ ]
352
+ embeddings = model.encode(sentences)
353
+ print(embeddings.shape)
354
+ # [3, 1024]
355
+
356
+ # Get the similarity scores for the embeddings
357
+ similarities = model.similarity(embeddings, embeddings)
358
+ print(similarities.shape)
359
+ # [3, 3]
360
+ ```
361
+
362
+ <!--
363
+ ### Direct Usage (Transformers)
364
+
365
+ <details><summary>Click to see the direct usage in Transformers</summary>
366
+
367
+ </details>
368
+ -->
369
+
370
+ <!--
371
+ ### Downstream Usage (Sentence Transformers)
372
+
373
+ You can finetune this model on your own dataset.
374
+
375
+ <details><summary>Click to expand</summary>
376
+
377
+ </details>
378
+ -->
379
+
380
+ <!--
381
+ ### Out-of-Scope Use
382
+
383
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
384
+ -->
385
+
386
+ <!--
387
+ ## Bias, Risks and Limitations
388
+
389
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
390
+ -->
391
+
392
+ <!--
393
+ ### Recommendations
394
+
395
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
396
+ -->
397
+
398
+ ## Training Details
399
+
400
+ ### Training Dataset
401
+
402
+ #### d4-embeddings
403
+
404
+ * Dataset: [d4-embeddings](https://huggingface.co/datasets/Lauther/d4-embeddings) at [09fb8a5](https://huggingface.co/datasets/Lauther/d4-embeddings/tree/09fb8a5fa7b222693e3a536b5ee892a1948b740b)
405
+ * Size: 11,165 training samples
406
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
407
+ * Approximate statistics based on the first 1000 samples:
408
+ | | sentence1 | sentence2 | label |
409
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------|
410
+ | type | string | string | int |
411
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.23 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 187.19 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>0: ~66.20%</li><li>1: ~33.80%</li></ul> |
412
+ * Samples:
413
+ | sentence1 | sentence2 | label |
414
+ |:----------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
415
+ | <code>Ramal ESVOL - TEVOL (GASVOL 14")</code> | <code>What is Equipment?<br>An Equipment represents a physical device that may be used within a measurement system. Equipment can be active or inactive and is classified by type, such as transmitters, thermometers, or other measurement-related devices.<br><br>Key Aspects of Equipment:<br>- Serial Number: A unique identifier assigned to each equipment unit for tracking and reference.<br>- Current State: Indicates whether the equipment is currently in use (ACT) or inactive (INA).<br>- Associated Equipment Type: Defines the category of the equipment (e.g., transmitter, thermometer), allowing classification and management.<br>Equipment plays a critical role in measurement systems, ensuring accuracy and reliability in data collection and processing.</code> | <code>0</code> |
416
+ | <code>Mol (%) CO</code> | <code>What is an Equipment Tag?<br>An Equipment Tag is a unique label string identifier assigned to equipment that is actively installed and in use within a measurement system. It differentiates between equipment in general (which may be in storage or inactive) and equipment that is currently operational in a system.<br><br>Key Aspects of Equipment Tags:<br>- Equipment-Tag: A distinct label or identifier that uniquely marks the equipment in operation.<br>- Equipment ID: Links the tag to the corresponding equipment unit.<br>- Belonging Measurement System: Specifies which measurement system the tagged equipment is part of.<br>- Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer), aiding in organization and system integration.<br>The Equipment Tag is essential for tracking and managing operational equipment within a measurement system, ensuring proper identification, monitoring, and maintenance.</code> | <code>0</code> |
417
+ | <code>FQI-4715-1411</code> | <code>What is a flow computer?<br>A flow computer is a device used in measurement engineering. It collects analog and digital data from flow meters and other sensors.<br><br>Key features of a flow computer:<br>- It has a unique name, firmware version, and manufacturer information.<br>- It is designed to record and process data such as temperature, pressure, and fluid volume (for gases or oils).</code> | <code>0</code> |
418
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
419
+ ```json
420
+ {
421
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
422
+ "margin": 0.5,
423
+ "size_average": true
424
+ }
425
+ ```
426
+
427
+ ### Evaluation Dataset
428
+
429
+ #### d4-embeddings
430
+
431
+ * Dataset: [d4-embeddings](https://huggingface.co/datasets/Lauther/d4-embeddings) at [09fb8a5](https://huggingface.co/datasets/Lauther/d4-embeddings/tree/09fb8a5fa7b222693e3a536b5ee892a1948b740b)
432
+ * Size: 2,392 evaluation samples
433
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
434
+ * Approximate statistics based on the first 1000 samples:
435
+ | | sentence1 | sentence2 | label |
436
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------|
437
+ | type | string | string | int |
438
+ | details | <ul><li>min: 3 tokens</li><li>mean: 8.22 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 183.06 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>0: ~66.30%</li><li>1: ~33.70%</li></ul> |
439
+ * Samples:
440
+ | sentence1 | sentence2 | label |
441
+ |:------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
442
+ | <code>PTE UTE JUIZ DE FORA (IGREJINHA) B</code> | <code>What is uncertainty?<br>Uncertainty is a measure of confidence in the precision and reliability of results obtained from equipment or measurement systems. It quantifies the potential error or margin of error in measurements.<br><br>Types of uncertainty:<br>There are two main types of uncertainty:<br>1. Uncertainty of magnitudes (variables):<br> - Refers to the uncertainty of specific variables, such as temperature or pressure.<br> - It is calculated after calibrating a device or obtained from the equipment manufacturer's manual.<br> - This uncertainty serves as a starting point for further calculations related to the equipment.<br><br>2. Uncertainty of the measurement system:<br> - Refers to the uncertainty calculated for the overall flow measurement.<br> - It depends on the uncertainties of the individual variables (magnitudes) and represents the combined margin of error for the entire system.<br><br>Key points:<br>- The uncertainties of magnitudes (variables) are the foundation for calculating the uncertainty of ...</code> | <code>1</code> |
443
+ | <code>measure type</code> | <code>What is a Calibration Record?<br>A Calibration Record documents the calibration process of a specific equipment tag, ensuring that its measurements remain accurate and reliable. Calibration is a critical process in maintaining measurement precision and compliance with standards.<br><br>Key Aspects of a Calibration Record:<br>- Calibration Date: The exact date when the calibration was performed, crucial for tracking maintenance schedules.<br>- Certification Number: A unique identifier for the calibration certificate, providing traceability and verification of compliance.<br>- Range Values: The minimum and maximum measurement values covered during the calibration process.<br>- Calibration Status: Indicates whether the calibration was approved or saved for further review.<br>- Associated Units: Specifies the measurement units used in calibration (e.g., °C, psi).<br>- Associated Equipment Tag ID: Links the calibration record to a specific equipment tag, ensuring traceability of measurement instruments.<br>Calibration r...</code> | <code>0</code> |
444
+ | <code>daily flow rate</code> | <code>What is a Measured Magnitude Value?<br>A Measured Magnitude Value represents a **DAILY** recorded physical measurement of a variable within a monitored fluid. These values are essential for tracking system performance, analyzing trends, and ensuring accurate monitoring of fluid properties.<br><br>Key Aspects of a Measured Magnitude Value:<br>- Measurement Date: The timestamp indicating when the measurement was recorded.<br>- Measured Value: The daily numeric result of the recorded physical magnitude.<br>- Measurement System Association: Links the measured value to a specific measurement system responsible for capturing the data.<br>- Variable Association: Identifies the specific variable (e.g., temperature, pressure, flow rate) corresponding to the recorded value.<br>Measured magnitude values are crucial for real-time monitoring, historical analysis, and calibration processes within measurement systems.<br><br>Database advices:<br>This values also are in **historics of a flow computer report**. Although, to go directl...</code> | <code>1</code> |
445
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
446
+ ```json
447
+ {
448
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
449
+ "margin": 0.5,
450
+ "size_average": true
451
+ }
452
+ ```
453
+
454
+ ### Training Hyperparameters
455
+ #### Non-Default Hyperparameters
456
+
457
+ - `eval_strategy`: steps
458
+ - `per_device_train_batch_size`: 12
459
+ - `per_device_eval_batch_size`: 12
460
+ - `gradient_accumulation_steps`: 8
461
+ - `weight_decay`: 0.01
462
+ - `max_grad_norm`: 0.5
463
+ - `num_train_epochs`: 5
464
+ - `lr_scheduler_type`: cosine
465
+ - `warmup_ratio`: 0.1
466
+
467
+ #### All Hyperparameters
468
+ <details><summary>Click to expand</summary>
469
+
470
+ - `overwrite_output_dir`: False
471
+ - `do_predict`: False
472
+ - `eval_strategy`: steps
473
+ - `prediction_loss_only`: True
474
+ - `per_device_train_batch_size`: 12
475
+ - `per_device_eval_batch_size`: 12
476
+ - `per_gpu_train_batch_size`: None
477
+ - `per_gpu_eval_batch_size`: None
478
+ - `gradient_accumulation_steps`: 8
479
+ - `eval_accumulation_steps`: None
480
+ - `torch_empty_cache_steps`: None
481
+ - `learning_rate`: 5e-05
482
+ - `weight_decay`: 0.01
483
+ - `adam_beta1`: 0.9
484
+ - `adam_beta2`: 0.999
485
+ - `adam_epsilon`: 1e-08
486
+ - `max_grad_norm`: 0.5
487
+ - `num_train_epochs`: 5
488
+ - `max_steps`: -1
489
+ - `lr_scheduler_type`: cosine
490
+ - `lr_scheduler_kwargs`: {}
491
+ - `warmup_ratio`: 0.1
492
+ - `warmup_steps`: 0
493
+ - `log_level`: passive
494
+ - `log_level_replica`: warning
495
+ - `log_on_each_node`: True
496
+ - `logging_nan_inf_filter`: True
497
+ - `save_safetensors`: True
498
+ - `save_on_each_node`: False
499
+ - `save_only_model`: False
500
+ - `restore_callback_states_from_checkpoint`: False
501
+ - `no_cuda`: False
502
+ - `use_cpu`: False
503
+ - `use_mps_device`: False
504
+ - `seed`: 42
505
+ - `data_seed`: None
506
+ - `jit_mode_eval`: False
507
+ - `use_ipex`: False
508
+ - `bf16`: False
509
+ - `fp16`: False
510
+ - `fp16_opt_level`: O1
511
+ - `half_precision_backend`: auto
512
+ - `bf16_full_eval`: False
513
+ - `fp16_full_eval`: False
514
+ - `tf32`: None
515
+ - `local_rank`: 0
516
+ - `ddp_backend`: None
517
+ - `tpu_num_cores`: None
518
+ - `tpu_metrics_debug`: False
519
+ - `debug`: []
520
+ - `dataloader_drop_last`: False
521
+ - `dataloader_num_workers`: 0
522
+ - `dataloader_prefetch_factor`: None
523
+ - `past_index`: -1
524
+ - `disable_tqdm`: False
525
+ - `remove_unused_columns`: True
526
+ - `label_names`: None
527
+ - `load_best_model_at_end`: False
528
+ - `ignore_data_skip`: False
529
+ - `fsdp`: []
530
+ - `fsdp_min_num_params`: 0
531
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
532
+ - `fsdp_transformer_layer_cls_to_wrap`: None
533
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
534
+ - `deepspeed`: None
535
+ - `label_smoothing_factor`: 0.0
536
+ - `optim`: adamw_torch
537
+ - `optim_args`: None
538
+ - `adafactor`: False
539
+ - `group_by_length`: False
540
+ - `length_column_name`: length
541
+ - `ddp_find_unused_parameters`: None
542
+ - `ddp_bucket_cap_mb`: None
543
+ - `ddp_broadcast_buffers`: False
544
+ - `dataloader_pin_memory`: True
545
+ - `dataloader_persistent_workers`: False
546
+ - `skip_memory_metrics`: True
547
+ - `use_legacy_prediction_loop`: False
548
+ - `push_to_hub`: False
549
+ - `resume_from_checkpoint`: None
550
+ - `hub_model_id`: None
551
+ - `hub_strategy`: every_save
552
+ - `hub_private_repo`: None
553
+ - `hub_always_push`: False
554
+ - `gradient_checkpointing`: False
555
+ - `gradient_checkpointing_kwargs`: None
556
+ - `include_inputs_for_metrics`: False
557
+ - `include_for_metrics`: []
558
+ - `eval_do_concat_batches`: True
559
+ - `fp16_backend`: auto
560
+ - `push_to_hub_model_id`: None
561
+ - `push_to_hub_organization`: None
562
+ - `mp_parameters`:
563
+ - `auto_find_batch_size`: False
564
+ - `full_determinism`: False
565
+ - `torchdynamo`: None
566
+ - `ray_scope`: last
567
+ - `ddp_timeout`: 1800
568
+ - `torch_compile`: False
569
+ - `torch_compile_backend`: None
570
+ - `torch_compile_mode`: None
571
+ - `dispatch_batches`: None
572
+ - `split_batches`: None
573
+ - `include_tokens_per_second`: False
574
+ - `include_num_input_tokens_seen`: False
575
+ - `neftune_noise_alpha`: None
576
+ - `optim_target_modules`: None
577
+ - `batch_eval_metrics`: False
578
+ - `eval_on_start`: False
579
+ - `use_liger_kernel`: False
580
+ - `eval_use_gather_object`: False
581
+ - `average_tokens_across_devices`: False
582
+ - `prompts`: None
583
+ - `batch_sampler`: batch_sampler
584
+ - `multi_dataset_batch_sampler`: proportional
585
+
586
+ </details>
587
+
588
+ ### Training Logs
589
+ | Epoch | Step | Training Loss | Validation Loss |
590
+ |:------:|:----:|:-------------:|:---------------:|
591
+ | 0.4296 | 50 | 0.1345 | - |
592
+ | 0.8593 | 100 | 0.0512 | - |
593
+ | 1.2836 | 150 | 0.041 | 0.0051 |
594
+ | 1.7132 | 200 | 0.0344 | - |
595
+ | 2.1375 | 250 | 0.0324 | - |
596
+ | 2.5671 | 300 | 0.0284 | 0.0038 |
597
+ | 2.9968 | 350 | 0.0296 | - |
598
+ | 3.4211 | 400 | 0.0261 | - |
599
+ | 3.8507 | 450 | 0.0268 | 0.0035 |
600
+ | 4.2750 | 500 | 0.0244 | - |
601
+ | 4.7046 | 550 | 0.0249 | - |
602
+
603
+
604
+ ### Framework Versions
605
+ - Python: 3.11.0
606
+ - Sentence Transformers: 3.4.1
607
+ - Transformers: 4.49.0
608
+ - PyTorch: 2.6.0+cu124
609
+ - Accelerate: 1.4.0
610
+ - Datasets: 3.3.2
611
+ - Tokenizers: 0.21.0
612
+
613
+ ## Citation
614
+
615
+ ### BibTeX
616
+
617
+ #### Sentence Transformers
618
+ ```bibtex
619
+ @inproceedings{reimers-2019-sentence-bert,
620
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
621
+ author = "Reimers, Nils and Gurevych, Iryna",
622
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
623
+ month = "11",
624
+ year = "2019",
625
+ publisher = "Association for Computational Linguistics",
626
+ url = "https://arxiv.org/abs/1908.10084",
627
+ }
628
+ ```
629
+
630
+ #### ContrastiveLoss
631
+ ```bibtex
632
+ @inproceedings{hadsell2006dimensionality,
633
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
634
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
635
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
636
+ year={2006},
637
+ volume={2},
638
+ number={},
639
+ pages={1735-1742},
640
+ doi={10.1109/CVPR.2006.100}
641
+ }
642
+ ```
643
+
644
+ <!--
645
+ ## Glossary
646
+
647
+ *Clearly define terms in order to be accessible across audiences.*
648
+ -->
649
+
650
+ <!--
651
+ ## Model Card Authors
652
+
653
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
654
+ -->
655
+
656
+ <!--
657
+ ## Model Card Contact
658
+
659
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
660
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/projects/embeddings-train/.models/finetuned--d4-embeddings-v1.0-ContrastiveLoss/checkpoint-580",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.49.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7a88e124a9b01f2e99a63ad2897c9c5919decf468d40e51d6ec277e66bbf373
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizerFast",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }