--- license: mit language: - en - zh base_model: - Qwen/Qwen2.5-7B --- # 对数据任务类型分类,比如"情感分析"、"文本分类"、"翻译","总结"、"数学问答".... import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import json import torch from transformers import AutoModelForCausalLM, AutoTokenizer from tqdm import tqdm from loguru import logger model_name = "Laurie/Qwen2.5-7b-data-classification" # 加载模型和 tokenizer,同时调整 padding_side 为 left(适用于 decoder-only 模型) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", # attn_implementation="flash_attention_2" ) tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # batch 推理时要左填充 # 对话模板 system_message = [{"role": "system", "content": "你是一个数据分类专家,请根据对话内容判断其所属的类别。"}] last_query = [{"role": "user", "content": "现在请输出你的判断结果:"}] def prepare_text(messages: list[dict]) -> str: """ 将 messages 中的 "from"/"value" 键转为 "role"/"content",并构造完整对话文本 """ messages = [{"role": item["from"], "content": item["value"]} for item in messages] messages = system_message + messages + last_query text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) return text def generate_task_types_batch(messages_batch: list[list[dict]]) -> list[str]: """ 对一个 batch 的对话列表进行推理生成,并返回每个对话中 assistant 的回答部分 """ # 将每个消息列表转换为完整文本 texts = [prepare_text(messages) for messages in messages_batch] # 使用批量编码,并进行 padding 以适应批量输入 model_inputs = tokenizer( texts, return_tensors="pt", padding=True, truncation=True ).to(model.device) with torch.no_grad(): generated_ids = model.generate( **model_inputs, max_new_tokens=32, eos_token_id=[151643, 151645], pad_token_id=151643, do_sample=True, repetition_penalty=1.05, temperature=0.7, top_p=0.8, top_k=20 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] task_types = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return task_types def process_json(json_path: str, save_path: str, batch_size: int = 8): """ 读取 JSON 文件,对数据进行批量推理处理, 并将结果写回保存。 """ with open(json_path, "r", encoding="utf-8") as f: data = json.load(f) # 分批处理,batch_size 可根据 GPU 显存情况进行调整 for i in tqdm(range(0, len(data_slice), batch_size)): batch = data_slice[i : i + batch_size] conversations_batch = [item["conversations"] for item in batch] task_types = generate_task_types_batch(conversations_batch) for item, answer in zip(batch, task_types): item["task_type"] = answer with open(save_path, "w", encoding="utf-8") as f: json.dump(data_slice, f, ensure_ascii=False, indent=4) logger.info(f"已处理 {len(data_slice)} 条数据,保存到 {save_path}") if __name__ == "__main__": json_path = "./qwen_bench_300k.json" save_path = "./qwen_bench_300k_cls.json" process_json(json_path, save_path, batch_size=16)