---
license: apache-2.0
library_name: diffusers
datasets:
- ILSVRC/imagenet-1k
---
# Gaussian Mixture Flow Matching Models (GMFlow)
Model used in the paper:
**Gaussian Mixture Flow Matching Models**
[Hansheng Chen](https://lakonik.github.io/)1,
[Kai Zhang](https://kai-46.github.io/website/)2,
[Hao Tan](https://research.adobe.com/person/hao-tan/)2,
[Zexiang Xu](https://zexiangxu.github.io/)3,
[Fujun Luan](https://research.adobe.com/person/fujun/)2,
[Leonidas Guibas](https://geometry.stanford.edu/?member=guibas)1,
[Gordon Wetzstein](http://web.stanford.edu/~gordonwz/)1,
[Sai Bi](https://sai-bi.github.io/)2
1Stanford University, 2Adobe Research, 3Hillbot
[[arXiv](https://arxiv.org/abs/2504.05304)] [[GitHub](https://github.com/Lakonik/GMFlow)]
## Usage
Please first install the [official code repository](https://github.com/Lakonik/GMFlow).
We provide a Diffusers pipeline for easy inference. The following code demonstrates how to sample images from the pretrained GM-DiT model using the GM-ODE 2 solver and the GM-SDE 2 solver.
```python
import torch
from huggingface_hub import snapshot_download
from lib.models.diffusions.schedulers import FlowEulerODEScheduler, GMFlowSDEScheduler
from lib.pipelines.gmdit_pipeline import GMDiTPipeline
# Currently the pipeline can only load local checkpoints, so we need to download the checkpoint first
ckpt = snapshot_download(repo_id='Lakonik/gmflow_imagenet_k8_ema')
pipe = GMDiTPipeline.from_pretrained(ckpt, variant='bf16', torch_dtype=torch.bfloat16)
pipe = pipe.to('cuda')
# Pick words that exist in ImageNet
words = ['jay', 'magpie']
class_ids = pipe.get_label_ids(words)
# Sample using GM-ODE 2 solver
pipe.scheduler = FlowEulerODEScheduler.from_config(pipe.scheduler.config)
generator = torch.manual_seed(42)
output = pipe(
class_labels=class_ids,
guidance_scale=0.45,
num_inference_steps=32,
num_inference_substeps=4,
output_mode='mean',
order=2,
generator=generator)
for i, (word, image) in enumerate(zip(words, output.images)):
image.save(f'{i:03d}_{word}_gmode2_step32.png')
# Sample using GM-SDE 2 solver (the first run may be slow due to CUDA compilation)
pipe.scheduler = GMFlowSDEScheduler.from_config(pipe.scheduler.config)
generator = torch.manual_seed(42)
output = pipe(
class_labels=class_ids,
guidance_scale=0.45,
num_inference_steps=32,
num_inference_substeps=1,
output_mode='sample',
order=2,
generator=generator)
for i, (word, image) in enumerate(zip(words, output.images)):
image.save(f'{i:03d}_{word}_gmsde2_step32.png')
```
## Citation
```
@misc{gmflow,
title={Gaussian Mixture Flow Matching Models},
author={Hansheng Chen and Kai Zhang and Hao Tan and Zexiang Xu and Fujun Luan and Leonidas Guibas and Gordon Wetzstein and Sai Bi},
year={2025},
eprint={2504.05304},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2504.05304},
}
```