LahiruWije commited on
Commit
053c51f
verified
1 Parent(s): 5969d59

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -18
README.md CHANGED
@@ -24,6 +24,54 @@ This model is a fine-tuned version of the **Qwen2.5-0.5B-Instruct** model, speci
24
 
25
  ## Model Details
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ### Model Description
28
 
29
  - **Developed by:** [Your Name or Organization]
@@ -70,21 +118,3 @@ Users should:
70
  - Fine-tune the model further for domain-specific tasks.
71
  - Be aware of potential biases and limitations in reasoning capabilities.
72
 
73
- ## How to Get Started with the Model
74
-
75
- Use the code below to load and use the model:
76
-
77
- ```python
78
- from transformers import AutoModelForCausalLM, AutoTokenizer
79
-
80
- model_name = "[Your Model Name on Hugging Face Hub]"
81
- model = AutoModelForCausalLM.from_pretrained(model_name)
82
- tokenizer = AutoTokenizer.from_pretrained(model_name)
83
-
84
- # Example input
85
- input_text = "There are 15 apples in a basket. If 3 are removed, how many apples are left?"
86
- inputs = tokenizer(input_text, return_tensors="pt")
87
-
88
- # Generate output
89
- outputs = model.generate(**inputs)
90
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
24
 
25
  ## Model Details
26
 
27
+ ## How to Get Started with the Model
28
+
29
+ Use the code below to load and use the model:
30
+
31
+ ```python
32
+ from unsloth import FastLanguageModel
33
+ from vllm import SamplingParams
34
+ import torch
35
+
36
+ # Load the Model & Tokenizer
37
+ model, tokenizer = FastLanguageModel.from_pretrained(
38
+ model_name = "AdamLucek/Qwen2.5-3B-Instruct-GRPO-2K-GSM8K",
39
+ max_seq_length = 2048,
40
+ load_in_4bit = True,
41
+ fast_inference = True,
42
+ gpu_memory_utilization = 0.7,
43
+ )
44
+
45
+ # Prep the Message
46
+ PROMPT = "How many r's are in the word strawberry?"
47
+
48
+ SYSTEM_PROMPT = """
49
+ Respond in the following format:
50
+ <reasoning>
51
+ ...
52
+ </reasoning>
53
+ <answer>
54
+ ...
55
+ </answer>
56
+ """
57
+
58
+ text = tokenizer.apply_chat_template([
59
+ {"role" : "system", "content" : SYSTEM_PROMPT},
60
+ {"role" : "user", "content" : PROMPT},
61
+ ], tokenize = False, add_generation_prompt = True)
62
+
63
+ # Generate a response
64
+ sampling_params = SamplingParams(
65
+ temperature = 0.8,
66
+ top_p = 0.95,
67
+ max_tokens = 1024,
68
+ )
69
+ output = model.fast_generate(
70
+ text,
71
+ sampling_params = sampling_params,
72
+ )[0].outputs[0].text
73
+ ```
74
+
75
  ### Model Description
76
 
77
  - **Developed by:** [Your Name or Organization]
 
118
  - Fine-tune the model further for domain-specific tasks.
119
  - Be aware of potential biases and limitations in reasoning capabilities.
120