File size: 5,022 Bytes
fc90506
 
 
 
57def9a
502c038
cd533db
39ab1a5
 
fc90506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e2991
fc90506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd533db
 
 
022335f
8e3f7c5
c1e234e
 
8e3f7c5
cd533db
 
 
 
 
 
 
8e3f7c5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: mit
---

code used to train
- https://gist.github.com/thistleknot/398466a4bd75a1315825d7f04db635a6/91194e69c5220e536f45536e6b7dd66995c847b1

currently setup to translate individual premises (sentences)

#datasets

- Yale-LILY/FOLIO
- apergo-ai/text2log (1661 records)

how to load

```
device = "cuda"
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"

model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.bfloat16, device_map=device)

reft_model = pyreft.ReftModel.load(
    "LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft", model
)
```

how to use
```
!git clone https://huggingface.co/LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft
from transformers import AutoModelForCausalLM
import torch
import pyreft
import os
import transformers

device = 'cuda'
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"

attn_implementation = "eager"
torch_dtype = torch.float16
#"microsoft/Phi-3-mini-4k-instruct"

model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.bfloat16, device_map=device,trust_remote_code=True)


# Define the PyReFT configuration
layers = range(model.config.num_hidden_layers)
representations = [{
    "component": f"model.layers[{l}].output",
    "intervention": pyreft.LoreftIntervention(
        embed_dim=model.config.hidden_size, 
        low_rank_dimension=16
    )
} for l in layers]

reft_config = pyreft.ReftConfig(representations=representations)

# Initialize the PyReFT model
reft_model = pyreft.get_reft_model(model, reft_config)

# Load the saved PyReFT model
local_directory = "./Phi-3-mini-4k-instruct-FOL-pyreft"
interventions = {}
for l in layers:
    component = f"model.layers[{l}].output"
    file_path = os.path.join(local_directory, f"intkey_comp.{component}.unit.pos.nunit.1#0.bin")
    if os.path.exists(file_path):
        with open(file_path, "rb") as f:
            adjusted_key = f"comp.{component}.unit.pos.nunit.1#0"
            interventions[adjusted_key] = torch.load(f)

# Apply the loaded weights to the model
for component, state_dict in interventions.items():
    if component in reft_model.interventions:
        reft_model.interventions[component][0].load_state_dict(state_dict)
    else:
        print(f"Key mismatch: {component} not found in reft_model.interventions")

# Set the device to CUDA
reft_model.set_device("cuda")

# Verify the model
reft_model.print_trainable_parameters()

#model.half()
# get tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(
    model_name_or_path, model_max_length=216,
    padding_side="right", use_fast=True,
    attn_implementation=attn_implementation
    #, add_eos_token=True, add_bos_token=True
)

tokenizer.pad_token = tokenizer.eos_token

# position info about the interventions
share_weights = True # whether the prefix and suffix interventions sharing weights.
positions="f3+l3"    # the intervening positions of prefix tokens (f[irst]1) and suffix tokens (l[ast]1).
first_n, last_n = pyreft.parse_positions(positions)

terminators = [
    tokenizer.eos_token_id,
]

prompt_no_input_template = """\n<|user|>:%s</s>\n<|assistant|>:"""

test_instruction = f"""tell me something I don't know"""
# tokenize and prepare the input
prompt = prompt_no_input_template % test_instruction
prompt = tokenizer(prompt, return_tensors="pt").to(device)

unit_locations = torch.IntTensor([pyreft.get_intervention_locations(
    last_position=prompt["input_ids"].shape[-1], 
    first_n=first_n, 
    last_n=last_n,
    pad_mode="last",
    num_interventions=len(reft_config.representations),
    share_weights=share_weights
)]).permute(1, 0, 2).tolist()

_, reft_response = reft_model.generate(
    prompt, unit_locations={"sources->base": (None, unit_locations)},
    intervene_on_prompt=True, max_new_tokens=537, do_sample=True, top_k=50,temperature=0.7,
    eos_token_id=terminators, early_stopping=True
)
print(tokenizer.decode(reft_response[0], skip_special_tokens=True))


```

response
```
:tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1))
```

training settings
```
    per_device_train_batch_size=6,
    logging_steps=1,
    optim='paged_lion_8bit',
    gradient_checkpointing_kwargs={"use_reentrant": False},
    learning_rate=0.0003,
    warmup_ratio=.1,
    adam_beta2=0.95,
    adam_epsilon=0.00001,
    save_strategy='epoch',
    max_grad_norm=1.0,
    lr_scheduler_type='cosine',
```

Evaluation:

I kept tweaking the model until I got confirmations from chatgpt 4, but the final training error (1 epoch) came in consistently under .5 (10 point EMA with alpha of .42)
Loss

![image/png](https://cdn-uploads.huggingface.co/production/uploads/62578ad28c6638f8a93e8856/Y_uAhaHH3ko6Z6tjYSy0y.png)


:tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1))
Does the fol expression fit?

Depending on how I asked (for example, it would almost always suggest revisions if I asked
- Is the fol expression adequate?
- How faithful is the fol expression?

)