"""PyTorch Sybil model for lung cancer risk prediction""" import torch import torch.nn as nn import torchvision from transformers import PreTrainedModel from transformers.modeling_outputs import BaseModelOutput from typing import Optional, Dict, List, Tuple import numpy as np from dataclasses import dataclass try: from .configuration_sybil import SybilConfig except ImportError: from configuration_sybil import SybilConfig @dataclass class SybilOutput(BaseModelOutput): """ Base class for Sybil model outputs. Args: risk_scores: (`torch.FloatTensor` of shape `(batch_size, max_followup)`): Predicted risk scores for each year up to max_followup. image_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices, height, width)`, *optional*): Attention weights over image pixels. volume_attention: (`torch.FloatTensor` of shape `(batch_size, num_slices)`, *optional*): Attention weights over CT scan slices. hidden_states: (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`, *optional*): Hidden states from the pooling layer. """ risk_scores: torch.FloatTensor = None image_attention: Optional[torch.FloatTensor] = None volume_attention: Optional[torch.FloatTensor] = None hidden_states: Optional[torch.FloatTensor] = None class CumulativeProbabilityLayer(nn.Module): """Cumulative probability layer for survival prediction""" def __init__(self, hidden_dim: int, max_followup: int = 6): super().__init__() self.max_followup = max_followup self.fc = nn.Linear(hidden_dim, max_followup) def forward(self, x): logits = self.fc(x) # Apply cumulative sum for monotonic risk scores cumsum = torch.cumsum(torch.sigmoid(logits), dim=-1) # Normalize to [0, 1] range return cumsum / self.max_followup class MultiAttentionPool(nn.Module): """Multi-attention pooling layer for CT scan aggregation""" def __init__(self, channels: int = 512): super().__init__() self.channels = channels # Volume-level attention (across slices) self.volume_attention = nn.Sequential( nn.Conv3d(channels, 128, kernel_size=1), nn.ReLU(), nn.Conv3d(128, 1, kernel_size=1) ) # Image-level attention (within slices) self.image_attention = nn.Sequential( nn.Conv3d(channels, 128, kernel_size=1), nn.ReLU(), nn.Conv3d(128, 1, kernel_size=1) ) def forward(self, x): batch_size = x.shape[0] # Compute attention weights volume_att = self.volume_attention(x) # [B, 1, D, H, W] image_att = self.image_attention(x) # [B, 1, D, H, W] # Apply softmax for normalization volume_att_flat = volume_att.view(batch_size, -1) volume_att_weights = torch.softmax(volume_att_flat, dim=-1) volume_att_weights = volume_att_weights.view_as(volume_att) image_att_2d = image_att.squeeze(1) # [B, D, H, W] for i in range(image_att_2d.shape[1]): # For each slice slice_att = image_att_2d[:, i, :, :].contiguous() slice_att_flat = slice_att.view(batch_size, -1) slice_att_weights = torch.softmax(slice_att_flat, dim=-1) image_att_2d[:, i, :, :] = slice_att_weights.view_as(slice_att) image_att = image_att_2d.unsqueeze(1) # Apply attention and pool attended = x * volume_att_weights * image_att hidden = attended.mean(dim=[2, 3, 4]) # Global average pooling return { 'hidden': hidden, 'volume_attention_1': volume_att_weights.squeeze(1), 'image_attention_1': image_att.squeeze(1) } class SybilPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SybilConfig base_model_prefix = "sybil" supports_gradient_checkpointing = False def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Conv3d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: module.bias.data.zero_() class SybilForRiskPrediction(SybilPreTrainedModel): """ Sybil model for lung cancer risk prediction from CT scans. This model takes 3D CT scan volumes as input and predicts cancer risk scores for multiple future time points (typically 1-6 years). """ def __init__(self, config: SybilConfig): super().__init__(config) self.config = config # Use pretrained R3D-18 as backbone encoder = torchvision.models.video.r3d_18(pretrained=True) self.image_encoder = nn.Sequential(*list(encoder.children())[:-2]) # Multi-attention pooling self.pool = MultiAttentionPool(channels=512) # Classification layers self.relu = nn.ReLU(inplace=False) self.dropout = nn.Dropout(p=config.dropout) # Risk prediction layer self.prob_of_failure_layer = CumulativeProbabilityLayer( config.hidden_dim, max_followup=config.max_followup ) # Calibrator for ensemble predictions self.calibrator = None if config.calibrator_data: self.set_calibrator(config.calibrator_data) # Initialize weights self.post_init() def set_calibrator(self, calibrator_data: Dict): """Set calibration data for risk score adjustment""" self.calibrator = calibrator_data def _calibrate_scores(self, scores: torch.Tensor) -> torch.Tensor: """Apply calibration to raw risk scores""" if self.calibrator is None: return scores # Convert to numpy for calibration scores_np = scores.detach().cpu().numpy() calibrated = np.zeros_like(scores_np) # Apply calibration for each year for year in range(scores_np.shape[1]): year_key = f"Year{year + 1}" if year_key in self.calibrator: # Apply calibration transformation calibrated[:, year] = self._apply_calibration( scores_np[:, year], self.calibrator[year_key] ) else: calibrated[:, year] = scores_np[:, year] return torch.from_numpy(calibrated).to(scores.device) def _apply_calibration(self, scores: np.ndarray, calibrator_params: Dict) -> np.ndarray: """Apply specific calibration transformation""" # Simplified calibration - in practice, this would use the full calibration model # from the original Sybil implementation return scores # Placeholder for now def forward( self, pixel_values: torch.FloatTensor, return_attentions: bool = False, return_dict: bool = True, ) -> SybilOutput: """ Forward pass of the Sybil model. Args: pixel_values: (`torch.FloatTensor` of shape `(batch_size, channels, depth, height, width)`): Pixel values of CT scan volumes. return_attentions: (`bool`, *optional*, defaults to `False`): Whether to return attention weights. return_dict: (`bool`, *optional*, defaults to `True`): Whether to return a `SybilOutput` instead of a plain tuple. Returns: `SybilOutput` or tuple """ # Extract features using 3D CNN backbone features = self.image_encoder(pixel_values) # Apply multi-attention pooling pool_output = self.pool(features) # Apply ReLU and dropout hidden = self.relu(pool_output['hidden']) hidden = self.dropout(hidden) # Predict risk scores risk_logits = self.prob_of_failure_layer(hidden) risk_scores = torch.sigmoid(risk_logits) # Apply calibration if available risk_scores = self._calibrate_scores(risk_scores) if not return_dict: outputs = (risk_scores,) if return_attentions: outputs = outputs + (pool_output.get('image_attention_1'), pool_output.get('volume_attention_1')) return outputs return SybilOutput( risk_scores=risk_scores, image_attention=pool_output.get('image_attention_1') if return_attentions else None, volume_attention=pool_output.get('volume_attention_1') if return_attentions else None, hidden_states=hidden if return_attentions else None ) @classmethod def from_pretrained_ensemble( cls, pretrained_model_name_or_path, checkpoint_paths: List[str], calibrator_path: Optional[str] = None, **kwargs ): """ Load an ensemble of Sybil models from checkpoints. Args: pretrained_model_name_or_path: Path to the pretrained model or model identifier. checkpoint_paths: List of paths to individual model checkpoints. calibrator_path: Path to calibration data. **kwargs: Additional keyword arguments for model initialization. Returns: SybilEnsemble: An ensemble of Sybil models. """ config = kwargs.pop("config", None) if config is None: config = SybilConfig.from_pretrained(pretrained_model_name_or_path) # Load calibrator if provided calibrator_data = None if calibrator_path: import json with open(calibrator_path, 'r') as f: calibrator_data = json.load(f) config.calibrator_data = calibrator_data # Create ensemble models = [] for checkpoint_path in checkpoint_paths: model = cls(config) # Load checkpoint weights checkpoint = torch.load(checkpoint_path, map_location='cpu') # Remove 'model.' prefix from state dict keys if present state_dict = {} for k, v in checkpoint['state_dict'].items(): if k.startswith('model.'): state_dict[k[6:]] = v else: state_dict[k] = v # Map to new model structure mapped_state_dict = model._map_checkpoint_weights(state_dict) model.load_state_dict(mapped_state_dict, strict=False) models.append(model) return SybilEnsemble(models, config) def _map_checkpoint_weights(self, state_dict: Dict) -> Dict: """Map original Sybil checkpoint weights to new structure""" mapped = {} # Map encoder weights for k, v in state_dict.items(): if k.startswith('image_encoder'): mapped[k] = v elif k.startswith('pool'): # Map pooling layer weights mapped[k] = v elif k.startswith('prob_of_failure_layer'): # Map final prediction layer mapped[k] = v return mapped class SybilEnsemble: """Ensemble of Sybil models for improved predictions""" def __init__(self, models: List[SybilForRiskPrediction], config: SybilConfig): self.models = models self.config = config self.device = None def to(self, device): """Move all models to device""" self.device = device for model in self.models: model.to(device) return self def eval(self): """Set all models to evaluation mode""" for model in self.models: model.eval() def __call__( self, pixel_values: torch.FloatTensor, return_attentions: bool = False, ) -> SybilOutput: """ Run inference with ensemble voting. Args: pixel_values: Input CT scan volumes. return_attentions: Whether to return attention maps. Returns: SybilOutput with averaged predictions from all models. """ all_risk_scores = [] all_image_attentions = [] all_volume_attentions = [] with torch.no_grad(): for model in self.models: output = model( pixel_values=pixel_values, return_attentions=return_attentions ) all_risk_scores.append(output.risk_scores) if return_attentions: all_image_attentions.append(output.image_attention) all_volume_attentions.append(output.volume_attention) # Average predictions risk_scores = torch.stack(all_risk_scores).mean(dim=0) # Average attentions if requested image_attention = None volume_attention = None if return_attentions: image_attention = torch.stack(all_image_attentions).mean(dim=0) volume_attention = torch.stack(all_volume_attentions).mean(dim=0) return SybilOutput( risk_scores=risk_scores, image_attention=image_attention, volume_attention=volume_attention )