Update README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ pipeline_tag: image-classification
|
|
21 |
|
22 |
# Sybil - Lung Cancer Risk Prediction
|
23 |
|
24 |
-
## Model Description
|
25 |
|
26 |
Sybil is a validated deep learning model that predicts future lung cancer risk from a single low-dose chest CT (LDCT) scan. Published in the Journal of Clinical Oncology, this model can assess cancer risk over a 1-6 year timeframe.
|
27 |
|
@@ -31,46 +31,118 @@ Sybil is a validated deep learning model that predicts future lung cancer risk f
|
|
31 |
- **Validated Performance**: Tested across multiple institutions globally
|
32 |
- **Ensemble Approach**: Uses 5 models for robust predictions
|
33 |
|
34 |
-
##
|
35 |
|
36 |
-
|
37 |
-
- **Adapted by**: Lab-Rasool (Hugging Face version)
|
38 |
-
- **Model type**: 3D Convolutional Neural Network
|
39 |
-
- **Architecture**: 3D ResNet-18 with multi-attention pooling
|
40 |
-
- **Input**: LDCT scans (200 slices Γ 256Γ256 pixels)
|
41 |
-
- **Output**: 6 risk scores (years 1-6)
|
42 |
-
- **License**: MIT
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|---------|------------|------------|
|
48 |
-
| NLST Test | 0.94 | 0.86 |
|
49 |
-
| MGH | 0.86 | 0.75 |
|
50 |
-
| CGMH Taiwan | 0.94 | 0.80 |
|
51 |
|
52 |
-
|
53 |
|
54 |
```python
|
55 |
-
from
|
|
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
config = SybilConfig()
|
59 |
-
model = SybilHFWrapper
|
60 |
|
61 |
-
# Prepare DICOM files
|
62 |
-
dicom_paths = ["scan1.dcm", "scan2.dcm", ...]
|
63 |
|
64 |
# Get predictions
|
65 |
output = model(dicom_paths=dicom_paths)
|
66 |
-
risk_scores = output.risk_scores
|
67 |
|
68 |
# Display results
|
69 |
-
|
70 |
-
|
|
|
71 |
```
|
72 |
|
73 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
### Primary Use Cases
|
76 |
- Risk stratification in lung cancer screening programs
|
@@ -83,40 +155,43 @@ for year, score in enumerate(risk_scores, 1):
|
|
83 |
- Screening program coordinators
|
84 |
|
85 |
### Out of Scope
|
86 |
-
- Diagnosis of existing cancer
|
87 |
-
- Use with non-LDCT imaging (X-rays, MRI)
|
88 |
-
- Sole basis for clinical decisions
|
|
|
89 |
|
90 |
-
##
|
91 |
|
92 |
-
|
93 |
-
-
|
94 |
-
-
|
95 |
-
-
|
96 |
-
-
|
|
|
97 |
|
98 |
-
##
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
-
|
103 |
-
-
|
104 |
-
-
|
|
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
- Requires LDCT scans specifically
|
110 |
-
- Performance may vary across different CT scanners
|
111 |
-
- Not validated for non-screening populations
|
112 |
|
113 |
-
|
114 |
|
115 |
-
**Original Paper:**
|
116 |
```bibtex
|
117 |
@article{mikhael2023sybil,
|
118 |
title={Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography},
|
119 |
-
author={Mikhael, Peter G and Wohlwend, Jeremy and Yala, Adam and
|
120 |
journal={Journal of Clinical Oncology},
|
121 |
volume={41},
|
122 |
number={12},
|
@@ -126,11 +201,60 @@ Trained on the National Lung Screening Trial (NLST) dataset:
|
|
126 |
}
|
127 |
```
|
128 |
|
129 |
-
## Acknowledgments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
For questions about the original model: See the [original repository](https://github.com/reginabarzilaygroup/Sybil)
|
|
|
21 |
|
22 |
# Sybil - Lung Cancer Risk Prediction
|
23 |
|
24 |
+
## π― Model Description
|
25 |
|
26 |
Sybil is a validated deep learning model that predicts future lung cancer risk from a single low-dose chest CT (LDCT) scan. Published in the Journal of Clinical Oncology, this model can assess cancer risk over a 1-6 year timeframe.
|
27 |
|
|
|
31 |
- **Validated Performance**: Tested across multiple institutions globally
|
32 |
- **Ensemble Approach**: Uses 5 models for robust predictions
|
33 |
|
34 |
+
## π Quick Start
|
35 |
|
36 |
+
### Installation
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
```bash
|
39 |
+
pip install huggingface-hub torch torchvision pydicom sybil
|
40 |
+
```
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
### Basic Usage
|
43 |
|
44 |
```python
|
45 |
+
from huggingface_hub import snapshot_download
|
46 |
+
import sys
|
47 |
|
48 |
+
# Download model
|
49 |
+
model_path = snapshot_download(repo_id="Lab-Rasool/sybil")
|
50 |
+
sys.path.append(model_path)
|
51 |
+
|
52 |
+
# Import model
|
53 |
+
from modeling_sybil_wrapper import SybilHFWrapper
|
54 |
+
from configuration_sybil import SybilConfig
|
55 |
+
|
56 |
+
# Initialize
|
57 |
config = SybilConfig()
|
58 |
+
model = SybilHFWrapper(config)
|
59 |
|
60 |
+
# Prepare your DICOM files (CT scan slices)
|
61 |
+
dicom_paths = ["scan1.dcm", "scan2.dcm", ...] # Replace with actual paths
|
62 |
|
63 |
# Get predictions
|
64 |
output = model(dicom_paths=dicom_paths)
|
65 |
+
risk_scores = output.risk_scores.numpy()
|
66 |
|
67 |
# Display results
|
68 |
+
print("Lung Cancer Risk Predictions:")
|
69 |
+
for i, score in enumerate(risk_scores):
|
70 |
+
print(f"Year {i+1}: {score*100:.1f}%")
|
71 |
```
|
72 |
|
73 |
+
## π Example with Demo Data
|
74 |
+
|
75 |
+
```python
|
76 |
+
import requests
|
77 |
+
import zipfile
|
78 |
+
from io import BytesIO
|
79 |
+
import os
|
80 |
+
|
81 |
+
# Download demo DICOM files
|
82 |
+
def get_demo_data():
|
83 |
+
cache_dir = os.path.expanduser("~/.sybil_demo")
|
84 |
+
demo_dir = os.path.join(cache_dir, "sybil_demo_data")
|
85 |
+
|
86 |
+
if not os.path.exists(demo_dir):
|
87 |
+
print("Downloading demo data...")
|
88 |
+
url = "https://www.dropbox.com/scl/fi/covbvo6f547kak4em3cjd/sybil_example.zip?rlkey=7a13nhlc9uwga9x7pmtk1cf1c&dl=1"
|
89 |
+
response = requests.get(url)
|
90 |
+
|
91 |
+
os.makedirs(cache_dir, exist_ok=True)
|
92 |
+
with zipfile.ZipFile(BytesIO(response.content)) as zf:
|
93 |
+
zf.extractall(cache_dir)
|
94 |
+
|
95 |
+
# Find DICOM files
|
96 |
+
dicom_files = []
|
97 |
+
for root, dirs, files in os.walk(cache_dir):
|
98 |
+
for file in files:
|
99 |
+
if file.endswith('.dcm'):
|
100 |
+
dicom_files.append(os.path.join(root, file))
|
101 |
+
|
102 |
+
return sorted(dicom_files)
|
103 |
+
|
104 |
+
# Run demo
|
105 |
+
from huggingface_hub import snapshot_download
|
106 |
+
import sys
|
107 |
+
|
108 |
+
# Load model
|
109 |
+
model_path = snapshot_download(repo_id="Lab-Rasool/sybil")
|
110 |
+
sys.path.append(model_path)
|
111 |
+
|
112 |
+
from modeling_sybil_wrapper import SybilHFWrapper
|
113 |
+
from configuration_sybil import SybilConfig
|
114 |
+
|
115 |
+
# Initialize and predict
|
116 |
+
config = SybilConfig()
|
117 |
+
model = SybilHFWrapper(config)
|
118 |
+
|
119 |
+
dicom_files = get_demo_data()
|
120 |
+
output = model(dicom_paths=dicom_files)
|
121 |
+
|
122 |
+
# Show results
|
123 |
+
for i, score in enumerate(output.risk_scores.numpy()):
|
124 |
+
print(f"Year {i+1}: {score*100:.1f}% risk")
|
125 |
+
```
|
126 |
+
|
127 |
+
Expected output for demo data:
|
128 |
+
```
|
129 |
+
Year 1: 2.2% risk
|
130 |
+
Year 2: 4.5% risk
|
131 |
+
Year 3: 7.2% risk
|
132 |
+
Year 4: 7.9% risk
|
133 |
+
Year 5: 9.6% risk
|
134 |
+
Year 6: 13.6% risk
|
135 |
+
```
|
136 |
+
|
137 |
+
## π Performance Metrics
|
138 |
+
|
139 |
+
| Dataset | 1-Year AUC | 6-Year AUC | Sample Size |
|
140 |
+
|---------|------------|------------|-------------|
|
141 |
+
| NLST Test | 0.94 | 0.86 | ~15,000 |
|
142 |
+
| MGH | 0.86 | 0.75 | ~12,000 |
|
143 |
+
| CGMH Taiwan | 0.94 | 0.80 | ~8,000 |
|
144 |
+
|
145 |
+
## π₯ Intended Use
|
146 |
|
147 |
### Primary Use Cases
|
148 |
- Risk stratification in lung cancer screening programs
|
|
|
155 |
- Screening program coordinators
|
156 |
|
157 |
### Out of Scope
|
158 |
+
- β Diagnosis of existing cancer
|
159 |
+
- β Use with non-LDCT imaging (X-rays, MRI)
|
160 |
+
- β Sole basis for clinical decisions
|
161 |
+
- β Use outside medical supervision
|
162 |
|
163 |
+
## π Input Requirements
|
164 |
|
165 |
+
- **Format**: DICOM files from chest CT scan
|
166 |
+
- **Type**: Low-dose CT (LDCT)
|
167 |
+
- **Orientation**: Axial view
|
168 |
+
- **Order**: Anatomically ordered (abdomen β clavicles)
|
169 |
+
- **Number of slices**: Typically 100-300 slices
|
170 |
+
- **Resolution**: Automatically handled by model
|
171 |
|
172 |
+
## β οΈ Important Considerations
|
173 |
|
174 |
+
### Medical AI Notice
|
175 |
+
This model should **supplement, not replace**, clinical judgment. Always consider:
|
176 |
+
- Complete patient medical history
|
177 |
+
- Additional risk factors (smoking, family history)
|
178 |
+
- Current clinical guidelines
|
179 |
+
- Need for professional medical oversight
|
180 |
|
181 |
+
### Limitations
|
182 |
+
- Optimized for screening population (ages 55-80)
|
183 |
+
- Best performance with LDCT scans
|
184 |
+
- Not validated for pediatric use
|
185 |
+
- Performance may vary with different scanner manufacturers
|
186 |
|
187 |
+
## π Citation
|
|
|
|
|
|
|
188 |
|
189 |
+
If you use this model, please cite the original paper:
|
190 |
|
|
|
191 |
```bibtex
|
192 |
@article{mikhael2023sybil,
|
193 |
title={Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography},
|
194 |
+
author={Mikhael, Peter G and Wohlwend, Jeremy and Yala, Adam and others},
|
195 |
journal={Journal of Clinical Oncology},
|
196 |
volume={41},
|
197 |
number={12},
|
|
|
201 |
}
|
202 |
```
|
203 |
|
204 |
+
## π Acknowledgments
|
205 |
+
|
206 |
+
This Hugging Face implementation is based on the original work by:
|
207 |
+
- **Original Authors**: Peter G. Mikhael & Jeremy Wohlwend
|
208 |
+
- **Institutions**: MIT CSAIL & Massachusetts General Hospital
|
209 |
+
- **Original Repository**: [GitHub](https://github.com/reginabarzilaygroup/Sybil)
|
210 |
+
- **Paper**: [Journal of Clinical Oncology](https://doi.org/10.1200/JCO.22.01345)
|
211 |
+
|
212 |
+
## π License
|
213 |
+
|
214 |
+
MIT License - See [LICENSE](LICENSE) file
|
215 |
+
|
216 |
+
- Original Model Β© 2022 Peter Mikhael & Jeremy Wohlwend
|
217 |
+
- HF Adaptation Β© 2024 Lab-Rasool
|
218 |
|
219 |
+
## π§ Troubleshooting
|
220 |
|
221 |
+
### Common Issues
|
222 |
+
|
223 |
+
1. **Import Error**: Make sure to append model path to sys.path
|
224 |
+
```python
|
225 |
+
sys.path.append(model_path)
|
226 |
+
```
|
227 |
+
|
228 |
+
2. **Missing Dependencies**: Install all requirements
|
229 |
+
```bash
|
230 |
+
pip install torch torchvision pydicom sybil huggingface-hub
|
231 |
+
```
|
232 |
+
|
233 |
+
3. **DICOM Loading Error**: Ensure DICOM files are valid CT scans
|
234 |
+
```python
|
235 |
+
import pydicom
|
236 |
+
dcm = pydicom.dcmread("your_file.dcm") # Test single file
|
237 |
+
```
|
238 |
+
|
239 |
+
4. **Memory Issues**: Model requires ~4GB GPU memory
|
240 |
+
```python
|
241 |
+
import torch
|
242 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
243 |
+
```
|
244 |
+
|
245 |
+
## π¬ Support
|
246 |
+
|
247 |
+
- **HF Model Issues**: Open issue on this repository
|
248 |
+
- **Original Model**: [GitHub Issues](https://github.com/reginabarzilaygroup/Sybil/issues)
|
249 |
+
- **Medical Questions**: Consult healthcare professionals
|
250 |
+
|
251 |
+
## π Additional Resources
|
252 |
+
|
253 |
+
- [Original GitHub Repository](https://github.com/reginabarzilaygroup/Sybil)
|
254 |
+
- [Paper (Open Access)](https://doi.org/10.1200/JCO.22.01345)
|
255 |
+
- [NLST Dataset Information](https://cdas.cancer.gov/nlst/)
|
256 |
+
- [Demo Data](https://github.com/reginabarzilaygroup/Sybil/releases)
|
257 |
+
|
258 |
+
---
|
259 |
|
260 |
+
**Note**: This is a research model. Always consult qualified healthcare professionals for medical decisions.
|
|