Update README.md
Browse files
README.md
CHANGED
@@ -78,8 +78,8 @@ from configuration_mirai import MiraiConfig
|
|
78 |
from preprocessor import MiraiPreprocessor
|
79 |
|
80 |
# Load model and configuration
|
81 |
-
config = MiraiConfig.from_pretrained(
|
82 |
-
model = MiraiModel.from_pretrained(
|
83 |
model.eval()
|
84 |
|
85 |
# Initialize preprocessor
|
@@ -116,15 +116,16 @@ risk_factors = {
|
|
116 |
|
117 |
risk_factors_tensor = preprocessor.prepare_risk_factors(risk_factors)
|
118 |
|
119 |
-
# Prepare batch
|
|
|
120 |
batch_images = exam_tensor.unsqueeze(0)
|
121 |
batch_risk_factors = risk_factors_tensor.unsqueeze(0)
|
122 |
|
123 |
# Create metadata for the batch
|
124 |
batch_metadata = {
|
125 |
'time_seq': torch.zeros(1, 4).long(),
|
126 |
-
'view_seq': torch.tensor([[0, 1,
|
127 |
-
'side_seq': torch.tensor([[0, 0, 1, 1]]),
|
128 |
}
|
129 |
|
130 |
# Run inference
|
@@ -147,9 +148,15 @@ with torch.no_grad():
|
|
147 |
risk_pct = probabilities[year] * 100
|
148 |
print(f"Year {year + 1} risk: {risk_pct:.2f}%")
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
```
|
154 |
|
155 |
### Method 2: Creating Sample Test Data
|
|
|
78 |
from preprocessor import MiraiPreprocessor
|
79 |
|
80 |
# Load model and configuration
|
81 |
+
config = MiraiConfig.from_pretrained(model_dir)
|
82 |
+
model = MiraiModel.from_pretrained(model_dir, config=config)
|
83 |
model.eval()
|
84 |
|
85 |
# Initialize preprocessor
|
|
|
116 |
|
117 |
risk_factors_tensor = preprocessor.prepare_risk_factors(risk_factors)
|
118 |
|
119 |
+
# Prepare batch - transpose to [views, channels, height, width]
|
120 |
+
exam_tensor = exam_tensor.permute(1, 0, 2, 3) # From [C, V, H, W] to [V, C, H, W]
|
121 |
batch_images = exam_tensor.unsqueeze(0)
|
122 |
batch_risk_factors = risk_factors_tensor.unsqueeze(0)
|
123 |
|
124 |
# Create metadata for the batch
|
125 |
batch_metadata = {
|
126 |
'time_seq': torch.zeros(1, 4).long(),
|
127 |
+
'view_seq': torch.tensor([[0, 1, 0, 1]]), # CC, MLO, CC, MLO
|
128 |
+
'side_seq': torch.tensor([[0, 0, 1, 1]]), # L, L, R, R
|
129 |
}
|
130 |
|
131 |
# Run inference
|
|
|
148 |
risk_pct = probabilities[year] * 100
|
149 |
print(f"Year {year + 1} risk: {risk_pct:.2f}%")
|
150 |
|
151 |
+
# Risk assessment for last available year
|
152 |
+
if len(probabilities) >= 5:
|
153 |
+
five_year_risk = probabilities[4] * 100
|
154 |
+
print(f"\n5-Year Cumulative Risk: {five_year_risk:.2f}%")
|
155 |
+
elif len(probabilities) > 0:
|
156 |
+
last_year = len(probabilities)
|
157 |
+
last_risk = probabilities[-1] * 100
|
158 |
+
print(f"\n{last_year}-Year Cumulative Risk: {last_risk:.2f}%")
|
159 |
+
|
160 |
```
|
161 |
|
162 |
### Method 2: Creating Sample Test Data
|