Aakash-Tripathi commited on
Commit
b17ceed
·
verified ·
1 Parent(s): 2ae5022

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -8
README.md CHANGED
@@ -78,8 +78,8 @@ from configuration_mirai import MiraiConfig
78
  from preprocessor import MiraiPreprocessor
79
 
80
  # Load model and configuration
81
- config = MiraiConfig.from_pretrained("Lab-Rasool/Mirai")
82
- model = MiraiModel.from_pretrained("Lab-Rasool/Mirai", config=config)
83
  model.eval()
84
 
85
  # Initialize preprocessor
@@ -116,15 +116,16 @@ risk_factors = {
116
 
117
  risk_factors_tensor = preprocessor.prepare_risk_factors(risk_factors)
118
 
119
- # Prepare batch
 
120
  batch_images = exam_tensor.unsqueeze(0)
121
  batch_risk_factors = risk_factors_tensor.unsqueeze(0)
122
 
123
  # Create metadata for the batch
124
  batch_metadata = {
125
  'time_seq': torch.zeros(1, 4).long(),
126
- 'view_seq': torch.tensor([[0, 1, 2, 3]]),
127
- 'side_seq': torch.tensor([[0, 0, 1, 1]]),
128
  }
129
 
130
  # Run inference
@@ -147,9 +148,15 @@ with torch.no_grad():
147
  risk_pct = probabilities[year] * 100
148
  print(f"Year {year + 1} risk: {risk_pct:.2f}%")
149
 
150
- # 5-year risk assessment
151
- five_year_risk = probabilities[4] * 100
152
- print(f"\n5-Year Cumulative Risk: {five_year_risk:.2f}%")
 
 
 
 
 
 
153
  ```
154
 
155
  ### Method 2: Creating Sample Test Data
 
78
  from preprocessor import MiraiPreprocessor
79
 
80
  # Load model and configuration
81
+ config = MiraiConfig.from_pretrained(model_dir)
82
+ model = MiraiModel.from_pretrained(model_dir, config=config)
83
  model.eval()
84
 
85
  # Initialize preprocessor
 
116
 
117
  risk_factors_tensor = preprocessor.prepare_risk_factors(risk_factors)
118
 
119
+ # Prepare batch - transpose to [views, channels, height, width]
120
+ exam_tensor = exam_tensor.permute(1, 0, 2, 3) # From [C, V, H, W] to [V, C, H, W]
121
  batch_images = exam_tensor.unsqueeze(0)
122
  batch_risk_factors = risk_factors_tensor.unsqueeze(0)
123
 
124
  # Create metadata for the batch
125
  batch_metadata = {
126
  'time_seq': torch.zeros(1, 4).long(),
127
+ 'view_seq': torch.tensor([[0, 1, 0, 1]]), # CC, MLO, CC, MLO
128
+ 'side_seq': torch.tensor([[0, 0, 1, 1]]), # L, L, R, R
129
  }
130
 
131
  # Run inference
 
148
  risk_pct = probabilities[year] * 100
149
  print(f"Year {year + 1} risk: {risk_pct:.2f}%")
150
 
151
+ # Risk assessment for last available year
152
+ if len(probabilities) >= 5:
153
+ five_year_risk = probabilities[4] * 100
154
+ print(f"\n5-Year Cumulative Risk: {five_year_risk:.2f}%")
155
+ elif len(probabilities) > 0:
156
+ last_year = len(probabilities)
157
+ last_risk = probabilities[-1] * 100
158
+ print(f"\n{last_year}-Year Cumulative Risk: {last_risk:.2f}%")
159
+
160
  ```
161
 
162
  ### Method 2: Creating Sample Test Data