Upload configuration_mirai.py with huggingface_hub
Browse files- configuration_mirai.py +130 -0
configuration_mirai.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration class for MIRAI model."""
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
from typing import List, Dict, Any, Optional
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class MiraiConfig(PretrainedConfig):
|
| 8 |
+
"""
|
| 9 |
+
Configuration class for MIRAI breast cancer risk prediction model.
|
| 10 |
+
|
| 11 |
+
Args:
|
| 12 |
+
num_classes: Number of prediction classes (default: 5 for 5-year predictions)
|
| 13 |
+
img_size: Input image size [height, width] (default: [1664, 2048])
|
| 14 |
+
num_chan: Number of image channels (default: 3)
|
| 15 |
+
num_images: Number of mammogram views (default: 4)
|
| 16 |
+
multi_image: Whether to use multiple images (default: True)
|
| 17 |
+
encoder_config: Configuration for the ResNet encoder
|
| 18 |
+
transformer_config: Configuration for the transformer module
|
| 19 |
+
risk_factors: Configuration for clinical risk factors
|
| 20 |
+
preprocessing: Image preprocessing parameters
|
| 21 |
+
**kwargs: Additional configuration parameters
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
model_type = "mirai"
|
| 25 |
+
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
num_classes: int = 5,
|
| 29 |
+
img_size: List[int] = None,
|
| 30 |
+
num_chan: int = 3,
|
| 31 |
+
num_images: int = 4,
|
| 32 |
+
multi_image: bool = True,
|
| 33 |
+
encoder_config: Dict[str, Any] = None,
|
| 34 |
+
transformer_config: Dict[str, Any] = None,
|
| 35 |
+
risk_factors: Dict[str, Any] = None,
|
| 36 |
+
preprocessing: Dict[str, Any] = None,
|
| 37 |
+
model_version: str = "1.0.0",
|
| 38 |
+
**kwargs
|
| 39 |
+
):
|
| 40 |
+
super().__init__(**kwargs)
|
| 41 |
+
|
| 42 |
+
# Model architecture
|
| 43 |
+
self.num_classes = num_classes
|
| 44 |
+
self.img_size = img_size or [1664, 2048]
|
| 45 |
+
self.num_chan = num_chan
|
| 46 |
+
self.num_images = num_images
|
| 47 |
+
self.multi_image = multi_image
|
| 48 |
+
self.model_version = model_version
|
| 49 |
+
|
| 50 |
+
# Encoder configuration
|
| 51 |
+
self.encoder_config = encoder_config or {
|
| 52 |
+
"architecture": "resnet",
|
| 53 |
+
"block_layout": [
|
| 54 |
+
["BasicBlock", 2],
|
| 55 |
+
["BasicBlock", 2],
|
| 56 |
+
["BasicBlock", 2],
|
| 57 |
+
["BasicBlock", 2]
|
| 58 |
+
],
|
| 59 |
+
"pool_name": "GlobalMaxPool",
|
| 60 |
+
"img_only_dim": 2048,
|
| 61 |
+
"dropout": 0.25,
|
| 62 |
+
"pretrained_on_imagenet": False
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
# Transformer configuration
|
| 66 |
+
self.transformer_config = transformer_config or {
|
| 67 |
+
"hidden_dim": 256,
|
| 68 |
+
"num_heads": 8,
|
| 69 |
+
"num_layers": 6,
|
| 70 |
+
"dropout": 0.1,
|
| 71 |
+
"max_seq_length": 4
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# Risk factors configuration
|
| 75 |
+
self.risk_factors = risk_factors or {
|
| 76 |
+
"use_risk_factors": True,
|
| 77 |
+
"num_risk_factors": 34,
|
| 78 |
+
"risk_factor_keys": [
|
| 79 |
+
"density", "binary_family_history", "binary_biopsy_benign", "binary_biopsy_LCIS",
|
| 80 |
+
"binary_biopsy_atypical_hyperplasia", "age", "menarche_age", "menopause_age",
|
| 81 |
+
"first_pregnancy_age", "prior_hist", "race", "parous", "menopausal_status",
|
| 82 |
+
"weight", "height", "ovarian_cancer", "ovarian_cancer_age", "ashkenazi",
|
| 83 |
+
"brca", "mom_bc_cancer_history", "m_aunt_bc_cancer_history",
|
| 84 |
+
"p_aunt_bc_cancer_history", "m_grandmother_bc_cancer_history",
|
| 85 |
+
"p_grantmother_bc_cancer_history", "sister_bc_cancer_history",
|
| 86 |
+
"mom_oc_cancer_history", "m_aunt_oc_cancer_history",
|
| 87 |
+
"p_aunt_oc_cancer_history", "m_grandmother_oc_cancer_history",
|
| 88 |
+
"p_grantmother_oc_cancer_history", "sister_oc_cancer_history",
|
| 89 |
+
"hrt_type", "hrt_duration", "hrt_years_ago_stopped"
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Preprocessing configuration
|
| 94 |
+
self.preprocessing = preprocessing or {
|
| 95 |
+
"img_mean": 7047.99,
|
| 96 |
+
"img_std": 12005.5,
|
| 97 |
+
"normalize_method": "imagenet",
|
| 98 |
+
"imagenet_mean": [0.485, 0.456, 0.406],
|
| 99 |
+
"imagenet_std": [0.229, 0.224, 0.225]
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def use_risk_factors(self) -> bool:
|
| 104 |
+
"""Whether the model uses clinical risk factors."""
|
| 105 |
+
return self.risk_factors.get("use_risk_factors", True)
|
| 106 |
+
|
| 107 |
+
@property
|
| 108 |
+
def num_risk_factors(self) -> int:
|
| 109 |
+
"""Number of clinical risk factors."""
|
| 110 |
+
return self.risk_factors.get("num_risk_factors", 34)
|
| 111 |
+
|
| 112 |
+
@property
|
| 113 |
+
def risk_factor_keys(self) -> List[str]:
|
| 114 |
+
"""List of risk factor keys."""
|
| 115 |
+
return self.risk_factors.get("risk_factor_keys", [])
|
| 116 |
+
|
| 117 |
+
@property
|
| 118 |
+
def img_height(self) -> int:
|
| 119 |
+
"""Image height."""
|
| 120 |
+
return self.img_size[0]
|
| 121 |
+
|
| 122 |
+
@property
|
| 123 |
+
def img_width(self) -> int:
|
| 124 |
+
"""Image width."""
|
| 125 |
+
return self.img_size[1]
|
| 126 |
+
|
| 127 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 128 |
+
"""Convert configuration to dictionary."""
|
| 129 |
+
output = super().to_dict()
|
| 130 |
+
return output
|