--- datasets: - togethercomputer/RedPajama-Data-V2 language: - de pipeline_tag: text-generation library_name: transformers license: other --- # LLäMmlein 120M LLäMmlein 120M is a German LLaMa model trained from scratch using our adapted [Tinyllama](https://github.com/jzhang38/TinyLlama) codebase on the German portion of [RedPajama V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). To enhance data quality, we additionally deduplicated the dataset on paragraph level and filtered it using a token-to-word ratio filter. The resulting dataset can be found [here](https://huggingface.co/datasets/LSX-UniWue/LLaMmlein-Dataset). We provide three model sizes: * [LLäMmlein 7B](https://huggingface.co/LSX-UniWue/LLaMmlein_7B) * [LLäMmlein 1B](https://huggingface.co/LSX-UniWue/LLaMmlein_1B) * [LLäMmlein 120M](https://huggingface.co/LSX-UniWue/LLaMmlein_120M) ← You are here Find more details on our page our [page](https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/) and our [preprint](https://arxiv.org/abs/2411.11171)! ### Usage You can use LLäMmlein with the `transformers` library. (Optional: install `flash-attn` to achieve highest efficiency.) ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "LSX-UniWue/LLaMmlein_120M" tokenizer = AutoTokenizer.from_pretrained("LSX-UniWue/LLaMmlein_120M") model = AutoModelForCausalLM.from_pretrained("LSX-UniWue/LLaMmlein_120M") ``` ### Intermediate Checkpoints In addition to the final model checkpoint, we publish intermediate checkpoints throughout the full training process as unique branches in this repository. A specific checkpoint can be loaded like this: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "LSX-UniWue/LLaMmlein_120M" revision = "iter-00420000-ckpt" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) model = AutoModelForCausalLM.from_pretrained(model_id, revision=revision) ``` Next to the model itself each branch contains all datapoints that were used to train the model up to that point. In the correspinding folder, named after the checkpoint, you can find several `.log` files (depending on the number of GPUs) of the following format: ```json {"time": 1739809392.679516, "iter_num": 0, "data_id": ["sha1:EDQMBYDCYBLDAZH3MGYM276BM2DEHPPJ", "sha1:SAJCI75DRHZZFGQORV66NB5FVWUAVLFH", "sha1:7RBZV2MCEM4TUGBBWGTFQAKTWUOGETZU", "sha1:234M32IMLZF7455AKOFWDP6HT6YXAYB4", "sha1:2BIZ7LLSHRK5GUGPZM2GM55APTDKBUG2", "sha1:OF7OI77ZT7ROXGMB6LL4RSRANX7REAYK", "sha1:LGPUOCOV3MKETI5F3IHVGZPD4M26NNJL", "sha1:SHIHUW7FJTP5YHFFV2JZ2CAHUVMKK7XG"], "file_id": [0, 0, 0, 0, 0, 0, 0, 0], "process_rank": 0} ``` Note: Our earlier models from the paper, which do not include data logging, are available at: * [LLäMmlein 1B prerelease](https://huggingface.co/LSX-UniWue/LLaMmlein_1B_prerelease) * [LLäMmlein 120M prerelease](https://huggingface.co/LSX-UniWue/LLaMmlein_120M_prerelease) ### License We release the LLäMmlein models under a research-only RAIL-M license. See [license.md](./license.md) for details.