remove unused option
Browse files- models/aggregator.py +0 -12
models/aggregator.py
CHANGED
|
@@ -12,14 +12,9 @@ class CLIPVisionCfg:
|
|
| 12 |
width: int = 512
|
| 13 |
head_width: int = 64
|
| 14 |
mlp_ratio: float = 4.0
|
| 15 |
-
patch_size: int = 16
|
| 16 |
-
image_size: Union[Tuple[int, int], int] = 224
|
| 17 |
|
| 18 |
ls_init_value: Optional[float] = None # layer scale initial value
|
| 19 |
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
| 20 |
-
attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer (overrides pool_type)
|
| 21 |
-
attn_pooler_queries: int = 256 # n_queries for attentional pooler
|
| 22 |
-
attn_pooler_heads: int = 8 # n heads for attentional_pooling
|
| 23 |
no_ln_pre: bool = False # disable pre transformer LayerNorm
|
| 24 |
pos_embed_type: str = 'none'
|
| 25 |
final_ln_after_pool: bool = True # apply final LayerNorm after pooling
|
|
@@ -28,13 +23,6 @@ class CLIPVisionCfg:
|
|
| 28 |
act_kwargs: Optional[dict] = None
|
| 29 |
norm_kwargs: Optional[dict] = None
|
| 30 |
|
| 31 |
-
timm_model_name: Optional[str] = None # a valid model name overrides layers, width, patch_size
|
| 32 |
-
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
|
| 33 |
-
timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
|
| 34 |
-
timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
|
| 35 |
-
timm_proj_bias: bool = False # enable bias final projection
|
| 36 |
-
timm_drop: float = 0. # head dropout
|
| 37 |
-
timm_drop_path: Optional[float] = None # backbone stochastic depth
|
| 38 |
img_embed: bool = False
|
| 39 |
cls_embed: bool = False
|
| 40 |
projection = False
|
|
|
|
| 12 |
width: int = 512
|
| 13 |
head_width: int = 64
|
| 14 |
mlp_ratio: float = 4.0
|
|
|
|
|
|
|
| 15 |
|
| 16 |
ls_init_value: Optional[float] = None # layer scale initial value
|
| 17 |
patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
|
|
|
|
|
|
|
|
|
|
| 18 |
no_ln_pre: bool = False # disable pre transformer LayerNorm
|
| 19 |
pos_embed_type: str = 'none'
|
| 20 |
final_ln_after_pool: bool = True # apply final LayerNorm after pooling
|
|
|
|
| 23 |
act_kwargs: Optional[dict] = None
|
| 24 |
norm_kwargs: Optional[dict] = None
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
img_embed: bool = False
|
| 27 |
cls_embed: bool = False
|
| 28 |
projection = False
|