Update README.md
Browse files
README.md
CHANGED
@@ -45,33 +45,31 @@ import torch
|
|
45 |
model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
|
47 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
|
48 |
-
text = "#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
53 |
```
|
54 |
**Code Insertion**
|
55 |
```python
|
56 |
-
from transformers import
|
57 |
import torch
|
58 |
model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id,
|
60 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto",
|
61 |
-
text = """
|
62 |
seen = {}
|
63 |
max_length = 0
|
64 |
start = 0
|
65 |
-
|
66 |
if char in seen and seen[char] >= start:
|
67 |
start = seen[char] + 1
|
68 |
seen[char] = end
|
69 |
max_length = max(max_length, end - start + 1)
|
70 |
-
return max_length
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
75 |
```
|
76 |
|
77 |
## 3.License
|
|
|
45 |
model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
|
47 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
|
48 |
+
text = "#write a quick sort algorithm"
|
49 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
50 |
+
outputs = model.generate(**inputs, max_new_tokens=80)
|
51 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):]))
|
|
|
52 |
```
|
53 |
**Code Insertion**
|
54 |
```python
|
55 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
56 |
import torch
|
57 |
model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
|
60 |
+
text = """<|fim▁begin|>def find_longest_substring(s):
|
61 |
seen = {}
|
62 |
max_length = 0
|
63 |
start = 0
|
64 |
+
<|fim▁hole|>
|
65 |
if char in seen and seen[char] >= start:
|
66 |
start = seen[char] + 1
|
67 |
seen[char] = end
|
68 |
max_length = max(max_length, end - start + 1)
|
69 |
+
return max_length<|fim▁end|>"""
|
70 |
+
inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
71 |
+
outputs = model.generate(**inputs, max_new_tokens=80)
|
72 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):]))
|
|
|
73 |
```
|
74 |
|
75 |
## 3.License
|