binglinchengxia commited on
Commit
b0b7604
·
verified ·
1 Parent(s): ed0dffb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -15
README.md CHANGED
@@ -45,33 +45,31 @@ import torch
45
  model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
46
  tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
47
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
48
- text = "#Finds the length of the longest substring without repeating characters."
49
- input_ids = tokenizer(text, return_tensors="pt").input_ids
50
- input_ids = input_ids.to(model.device)
51
- outputs = model.generate(input_ids, max_new_tokens=80)
52
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
53
  ```
54
  **Code Insertion**
55
  ```python
56
- from transformers import AutoTokenizer, AutoModelForCausalLM
57
  import torch
58
  model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
59
- tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
60
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16)
61
- text = """<|fim_begin|>def find_longest_substring(s):
62
  seen = {}
63
  max_length = 0
64
  start = 0
65
- <|fim_hole|>
66
  if char in seen and seen[char] >= start:
67
  start = seen[char] + 1
68
  seen[char] = end
69
  max_length = max(max_length, end - start + 1)
70
- return max_length<|fim_end|>"""
71
- input_ids = tokenizer(text, return_tensors="pt").input_ids
72
- input_ids = input_ids.to(model.device)
73
- outputs = model.generate(input_ids, max_new_tokens=80)
74
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
75
  ```
76
 
77
  ## 3.License
 
45
  model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
46
  tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
47
  model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
48
+ text = "#write a quick sort algorithm"
49
+ inputs = tokenizer(text, return_tensors="pt").to(model.device)
50
+ outputs = model.generate(**inputs, max_new_tokens=80)
51
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):]))
 
52
  ```
53
  **Code Insertion**
54
  ```python
55
+ from transformers import AutoModelForCausalLM, AutoTokenizer
56
  import torch
57
  model_id = "Kwaipilot/KwaiCoder-DS-V2-Lite-Base"
58
+ tokenizer = AutoTokenizer.from_pretrained(model_id,trust_remote_code=True)
59
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16,trust_remote_code=True)
60
+ text = """<|fim▁begin|>def find_longest_substring(s):
61
  seen = {}
62
  max_length = 0
63
  start = 0
64
+ <|fim▁hole|>
65
  if char in seen and seen[char] >= start:
66
  start = seen[char] + 1
67
  seen[char] = end
68
  max_length = max(max_length, end - start + 1)
69
+ return max_length<|fim▁end|>"""
70
+ inputs = tokenizer(text, return_tensors="pt").to(model.device)
71
+ outputs = model.generate(**inputs, max_new_tokens=80)
72
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(text):]))
 
73
  ```
74
 
75
  ## 3.License