MaiDD commited on
Commit
7df54c7
1 Parent(s): bc6e3d3

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 多要素認証エンジンである「LOCKED」と、セキュリティコンサルティングを通じて、国内企業のゼロトラスト対応を支援しているスタートアップ。
12
+ - text: Hotel rooms on the wheelsをコンセプトにした、自社生産のキャンピングカーレンタルサービスを展開するスタートアップ。
13
+ - text: バイオ新薬事業やバイオシミラー事業などバイオに関わる研究開発を行う企業。2021年7月にジーンテクノサイエンスからキッズウェル・バイオに社名変更をしている。
14
+ - text: 業務用冷凍食品の企画・開発・販売を行い、自社商品の調理方法などを公開する企業。
15
+ - text: がん治療機器「集束超音波(HIFU)治療装置」の開発を行う東北大学発のスタートアップ。「集束超音波」は、超音波を一点に集中させてがん組織に照射し、加熱効果などで切らずに治療する方法。放射線被曝が無いことから繰り返し治療ができ、がんに対する次世代治療として期待されている。2022年12月には、ニッセイ・キャピタル、野村スパークス・インベストメント、大和企業投資、りそなキャピタル、Carbon
16
+ Ventures、QRインベストメント、JA三井リース、ファストトラックイニシアティブ、SBIインベストメント、三菱UFJキャピタル、FFGベンチャービジネスパートナーズ、肥銀キャピタルを引受先とする総額23億5,000万円の資金調達を発表した。今後は、膵癌の国内治験および海外展開を含めた事業拡大に充当し、同社のビジョンである“音響工学(超音波)でがん患者さんに新たな未来をもたらす”を1日でも早く実現することを目指す。
17
+ pipeline_tag: text-classification
18
+ inference: false
19
+ model-index:
20
+ - name: SetFit
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.7902097902097902
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
49
+ - **Classification head:** a OneVsRestClassifier instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ <!-- - **Number of Classes:** Unknown -->
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ## Evaluation
63
+
64
+ ### Metrics
65
+ | Label | Accuracy |
66
+ |:--------|:---------|
67
+ | **all** | 0.7902 |
68
+
69
+ ## Uses
70
+
71
+ ### Direct Use for Inference
72
+
73
+ First install the SetFit library:
74
+
75
+ ```bash
76
+ pip install setfit
77
+ ```
78
+
79
+ Then you can load this model and run inference.
80
+
81
+ ```python
82
+ from setfit import SetFitModel
83
+
84
+ # Download from the 🤗 Hub
85
+ model = SetFitModel.from_pretrained("Ekohe/RevenueStreamJP")
86
+ # Run inference
87
+ preds = model("業務用冷凍食品の企画・開発・販売を行い、自社商品の調理方法などを公開する企業。")
88
+ ```
89
+
90
+ <!--
91
+ ### Downstream Use
92
+
93
+ *List how someone could finetune this model on their own dataset.*
94
+ -->
95
+
96
+ <!--
97
+ ### Out-of-Scope Use
98
+
99
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
100
+ -->
101
+
102
+ <!--
103
+ ## Bias, Risks and Limitations
104
+
105
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
106
+ -->
107
+
108
+ <!--
109
+ ### Recommendations
110
+
111
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
112
+ -->
113
+
114
+ ## Training Details
115
+
116
+ ### Training Set Metrics
117
+ | Training set | Min | Median | Max |
118
+ |:-------------|:----|:-------|:----|
119
+ | Word count | 1 | 1.8981 | 57 |
120
+
121
+ ### Training Hyperparameters
122
+ - batch_size: (8, 8)
123
+ - num_epochs: (35, 35)
124
+ - max_steps: -1
125
+ - sampling_strategy: oversampling
126
+ - num_iterations: 2
127
+ - body_learning_rate: (2e-05, 2e-05)
128
+ - head_learning_rate: 2e-05
129
+ - loss: CosineSimilarityLoss
130
+ - distance_metric: cosine_distance
131
+ - margin: 0.25
132
+ - end_to_end: False
133
+ - use_amp: False
134
+ - warmup_proportion: 0.1
135
+ - seed: 42
136
+ - eval_max_steps: -1
137
+ - load_best_model_at_end: False
138
+
139
+ ### Training Results
140
+ | Epoch | Step | Training Loss | Validation Loss |
141
+ |:-------:|:----:|:-------------:|:---------------:|
142
+ | 0.0035 | 1 | 0.3068 | - |
143
+ | 0.1754 | 50 | 0.2708 | - |
144
+ | 0.3509 | 100 | 0.2253 | - |
145
+ | 0.5263 | 150 | 0.2705 | - |
146
+ | 0.7018 | 200 | 0.1665 | - |
147
+ | 0.8772 | 250 | 0.2609 | - |
148
+ | 1.0526 | 300 | 0.2681 | - |
149
+ | 1.2281 | 350 | 0.2614 | - |
150
+ | 1.4035 | 400 | 0.2151 | - |
151
+ | 1.5789 | 450 | 0.1952 | - |
152
+ | 1.7544 | 500 | 0.2275 | - |
153
+ | 1.9298 | 550 | 0.3111 | - |
154
+ | 2.1053 | 600 | 0.1036 | - |
155
+ | 2.2807 | 650 | 0.1038 | - |
156
+ | 2.4561 | 700 | 0.0081 | - |
157
+ | 2.6316 | 750 | 0.0906 | - |
158
+ | 2.8070 | 800 | 0.0002 | - |
159
+ | 2.9825 | 850 | 0.0928 | - |
160
+ | 3.1579 | 900 | 0.0004 | - |
161
+ | 3.3333 | 950 | 0.0011 | - |
162
+ | 3.5088 | 1000 | 0.0013 | - |
163
+ | 3.6842 | 1050 | 0.0004 | - |
164
+ | 3.8596 | 1100 | 0.0012 | - |
165
+ | 4.0351 | 1150 | 0.0002 | - |
166
+ | 4.2105 | 1200 | 0.0004 | - |
167
+ | 4.3860 | 1250 | 0.0003 | - |
168
+ | 4.5614 | 1300 | 0.0 | - |
169
+ | 4.7368 | 1350 | 0.0001 | - |
170
+ | 4.9123 | 1400 | 0.0002 | - |
171
+ | 5.0877 | 1450 | 0.0 | - |
172
+ | 5.2632 | 1500 | 0.0002 | - |
173
+ | 5.4386 | 1550 | 0.0 | - |
174
+ | 5.6140 | 1600 | 0.0 | - |
175
+ | 5.7895 | 1650 | 0.0 | - |
176
+ | 5.9649 | 1700 | 0.1017 | - |
177
+ | 6.1404 | 1750 | 0.0012 | - |
178
+ | 6.3158 | 1800 | 0.0 | - |
179
+ | 6.4912 | 1850 | 0.0001 | - |
180
+ | 6.6667 | 1900 | 0.0 | - |
181
+ | 6.8421 | 1950 | 0.0003 | - |
182
+ | 7.0175 | 2000 | 0.0 | - |
183
+ | 7.1930 | 2050 | 0.0 | - |
184
+ | 7.3684 | 2100 | 0.0 | - |
185
+ | 7.5439 | 2150 | 0.0 | - |
186
+ | 7.7193 | 2200 | 0.0 | - |
187
+ | 7.8947 | 2250 | 0.0 | - |
188
+ | 8.0702 | 2300 | 0.0 | - |
189
+ | 8.2456 | 2350 | 0.0 | - |
190
+ | 8.4211 | 2400 | 0.0019 | - |
191
+ | 8.5965 | 2450 | 0.0017 | - |
192
+ | 8.7719 | 2500 | 0.0 | - |
193
+ | 8.9474 | 2550 | 0.0034 | - |
194
+ | 9.1228 | 2600 | 0.0 | - |
195
+ | 9.2982 | 2650 | 0.0 | - |
196
+ | 9.4737 | 2700 | 0.0 | - |
197
+ | 9.6491 | 2750 | 0.0 | - |
198
+ | 9.8246 | 2800 | 0.0 | - |
199
+ | 10.0 | 2850 | 0.0 | - |
200
+ | 10.1754 | 2900 | 0.0 | - |
201
+ | 10.3509 | 2950 | 0.0 | - |
202
+ | 10.5263 | 3000 | 0.0 | - |
203
+ | 10.7018 | 3050 | 0.0 | - |
204
+ | 10.8772 | 3100 | 0.0001 | - |
205
+ | 11.0526 | 3150 | 0.0 | - |
206
+ | 11.2281 | 3200 | 0.0 | - |
207
+ | 11.4035 | 3250 | 0.0 | - |
208
+ | 11.5789 | 3300 | 0.0 | - |
209
+ | 11.7544 | 3350 | 0.0 | - |
210
+ | 11.9298 | 3400 | 0.0 | - |
211
+ | 12.1053 | 3450 | 0.0 | - |
212
+ | 12.2807 | 3500 | 0.0 | - |
213
+ | 12.4561 | 3550 | 0.0 | - |
214
+ | 12.6316 | 3600 | 0.0 | - |
215
+ | 12.8070 | 3650 | 0.0 | - |
216
+ | 12.9825 | 3700 | 0.0 | - |
217
+ | 13.1579 | 3750 | 0.0 | - |
218
+ | 13.3333 | 3800 | 0.0 | - |
219
+ | 13.5088 | 3850 | 0.0 | - |
220
+ | 13.6842 | 3900 | 0.0 | - |
221
+ | 13.8596 | 3950 | 0.0 | - |
222
+ | 14.0351 | 4000 | 0.0 | - |
223
+ | 14.2105 | 4050 | 0.0 | - |
224
+ | 14.3860 | 4100 | 0.0 | - |
225
+ | 14.5614 | 4150 | 0.0 | - |
226
+ | 14.7368 | 4200 | 0.0 | - |
227
+ | 14.9123 | 4250 | 0.0 | - |
228
+ | 15.0877 | 4300 | 0.0 | - |
229
+ | 15.2632 | 4350 | 0.0 | - |
230
+ | 15.4386 | 4400 | 0.0 | - |
231
+ | 15.6140 | 4450 | 0.0 | - |
232
+ | 15.7895 | 4500 | 0.0 | - |
233
+ | 15.9649 | 4550 | 0.1016 | - |
234
+ | 16.1404 | 4600 | 0.1214 | - |
235
+ | 16.3158 | 4650 | 0.0 | - |
236
+ | 16.4912 | 4700 | 0.0 | - |
237
+ | 16.6667 | 4750 | 0.0 | - |
238
+ | 16.8421 | 4800 | 0.0 | - |
239
+ | 17.0175 | 4850 | 0.0 | - |
240
+ | 17.1930 | 4900 | 0.0 | - |
241
+ | 17.3684 | 4950 | 0.0 | - |
242
+ | 17.5439 | 5000 | 0.0 | - |
243
+ | 17.7193 | 5050 | 0.0 | - |
244
+ | 17.8947 | 5100 | 0.0 | - |
245
+ | 18.0702 | 5150 | 0.0 | - |
246
+ | 18.2456 | 5200 | 0.0 | - |
247
+ | 18.4211 | 5250 | 0.0 | - |
248
+ | 18.5965 | 5300 | 0.0 | - |
249
+ | 18.7719 | 5350 | 0.0 | - |
250
+ | 18.9474 | 5400 | 0.0 | - |
251
+ | 19.1228 | 5450 | 0.0 | - |
252
+ | 19.2982 | 5500 | 0.0001 | - |
253
+ | 19.4737 | 5550 | 0.0 | - |
254
+ | 19.6491 | 5600 | 0.0001 | - |
255
+ | 19.8246 | 5650 | 0.0174 | - |
256
+ | 20.0 | 5700 | 0.0 | - |
257
+ | 20.1754 | 5750 | 0.0 | - |
258
+ | 20.3509 | 5800 | 0.0 | - |
259
+ | 20.5263 | 5850 | 0.0 | - |
260
+ | 20.7018 | 5900 | 0.0 | - |
261
+ | 20.8772 | 5950 | 0.0 | - |
262
+ | 21.0526 | 6000 | 0.0 | - |
263
+ | 21.2281 | 6050 | 0.0 | - |
264
+ | 21.4035 | 6100 | 0.0 | - |
265
+ | 21.5789 | 6150 | 0.0 | - |
266
+ | 21.7544 | 6200 | 0.0 | - |
267
+ | 21.9298 | 6250 | 0.0 | - |
268
+ | 22.1053 | 6300 | 0.0 | - |
269
+ | 22.2807 | 6350 | 0.0 | - |
270
+ | 22.4561 | 6400 | 0.0 | - |
271
+ | 22.6316 | 6450 | 0.0 | - |
272
+ | 22.8070 | 6500 | 0.0 | - |
273
+ | 22.9825 | 6550 | 0.0 | - |
274
+ | 23.1579 | 6600 | 0.0 | - |
275
+ | 23.3333 | 6650 | 0.0 | - |
276
+ | 23.5088 | 6700 | 0.0 | - |
277
+ | 23.6842 | 6750 | 0.0 | - |
278
+ | 23.8596 | 6800 | 0.0 | - |
279
+ | 24.0351 | 6850 | 0.0 | - |
280
+ | 24.2105 | 6900 | 0.0 | - |
281
+ | 24.3860 | 6950 | 0.0 | - |
282
+ | 24.5614 | 7000 | 0.0 | - |
283
+ | 24.7368 | 7050 | 0.0 | - |
284
+ | 24.9123 | 7100 | 0.0 | - |
285
+ | 25.0877 | 7150 | 0.0 | - |
286
+ | 25.2632 | 7200 | 0.0 | - |
287
+ | 25.4386 | 7250 | 0.0816 | - |
288
+ | 25.6140 | 7300 | 0.0005 | - |
289
+ | 25.7895 | 7350 | 0.0 | - |
290
+ | 25.9649 | 7400 | 0.0001 | - |
291
+ | 26.1404 | 7450 | 0.0001 | - |
292
+ | 26.3158 | 7500 | 0.0 | - |
293
+ | 26.4912 | 7550 | 0.0 | - |
294
+ | 26.6667 | 7600 | 0.0 | - |
295
+ | 26.8421 | 7650 | 0.0 | - |
296
+ | 27.0175 | 7700 | 0.0 | - |
297
+ | 27.1930 | 7750 | 0.0 | - |
298
+ | 27.3684 | 7800 | 0.0 | - |
299
+ | 27.5439 | 7850 | 0.0 | - |
300
+ | 27.7193 | 7900 | 0.0 | - |
301
+ | 27.8947 | 7950 | 0.0 | - |
302
+ | 28.0702 | 8000 | 0.0 | - |
303
+ | 28.2456 | 8050 | 0.0 | - |
304
+ | 28.4211 | 8100 | 0.0 | - |
305
+ | 28.5965 | 8150 | 0.0 | - |
306
+ | 28.7719 | 8200 | 0.0 | - |
307
+ | 28.9474 | 8250 | 0.0 | - |
308
+ | 29.1228 | 8300 | 0.0 | - |
309
+ | 29.2982 | 8350 | 0.0 | - |
310
+ | 29.4737 | 8400 | 0.0 | - |
311
+ | 29.6491 | 8450 | 0.0 | - |
312
+ | 29.8246 | 8500 | 0.0 | - |
313
+ | 30.0 | 8550 | 0.0 | - |
314
+ | 30.1754 | 8600 | 0.0 | - |
315
+ | 30.3509 | 8650 | 0.0 | - |
316
+ | 30.5263 | 8700 | 0.0 | - |
317
+ | 30.7018 | 8750 | 0.0 | - |
318
+ | 30.8772 | 8800 | 0.0 | - |
319
+ | 31.0526 | 8850 | 0.0 | - |
320
+ | 31.2281 | 8900 | 0.0 | - |
321
+ | 31.4035 | 8950 | 0.0 | - |
322
+ | 31.5789 | 9000 | 0.0 | - |
323
+ | 31.7544 | 9050 | 0.0 | - |
324
+ | 31.9298 | 9100 | 0.0 | - |
325
+ | 32.1053 | 9150 | 0.0 | - |
326
+ | 32.2807 | 9200 | 0.0 | - |
327
+ | 32.4561 | 9250 | 0.0 | - |
328
+ | 32.6316 | 9300 | 0.0 | - |
329
+ | 32.8070 | 9350 | 0.0 | - |
330
+ | 32.9825 | 9400 | 0.0 | - |
331
+ | 33.1579 | 9450 | 0.0 | - |
332
+ | 33.3333 | 9500 | 0.0 | - |
333
+ | 33.5088 | 9550 | 0.0 | - |
334
+ | 33.6842 | 9600 | 0.0 | - |
335
+ | 33.8596 | 9650 | 0.0 | - |
336
+ | 34.0351 | 9700 | 0.0 | - |
337
+ | 34.2105 | 9750 | 0.0 | - |
338
+ | 34.3860 | 9800 | 0.0 | - |
339
+ | 34.5614 | 9850 | 0.0 | - |
340
+ | 34.7368 | 9900 | 0.0 | - |
341
+ | 34.9123 | 9950 | 0.0 | - |
342
+
343
+ ### Framework Versions
344
+ - Python: 3.10.12
345
+ - SetFit: 1.0.1
346
+ - Sentence Transformers: 2.2.2
347
+ - Transformers: 4.35.2
348
+ - PyTorch: 2.1.0+cu118
349
+ - Datasets: 2.15.0
350
+ - Tokenizers: 0.15.0
351
+
352
+ ## Citation
353
+
354
+ ### BibTeX
355
+ ```bibtex
356
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
357
+ doi = {10.48550/ARXIV.2209.11055},
358
+ url = {https://arxiv.org/abs/2209.11055},
359
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
360
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
361
+ title = {Efficient Few-Shot Learning Without Prompts},
362
+ publisher = {arXiv},
363
+ year = {2022},
364
+ copyright = {Creative Commons Attribution 4.0 International}
365
+ }
366
+ ```
367
+
368
+ <!--
369
+ ## Glossary
370
+
371
+ *Clearly define terms in order to be accessible across audiences.*
372
+ -->
373
+
374
+ <!--
375
+ ## Model Card Authors
376
+
377
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
378
+ -->
379
+
380
+ <!--
381
+ ## Model Card Contact
382
+
383
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
384
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.35.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 119547
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.35.2",
5
+ "pytorch": "2.1.0+cu118"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d870039c769fa154bdf1e2a274e01a52a48effcb94c9b1cc2a90ac254885ca8
3
+ size 711436136
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:870dfac192d0419457e5b04571f82de86a74437298fa7e3a9f736b62d7773e34
3
+ size 13956
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 1000000000000000019884624838656,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff