--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 library_name: peft tags: - chess - tinyllama - lora - json - alpaca-format - ai-tournament - aura --- # ♟️ Konvah's Chess TinyLlama This model is a fine-tuned version of [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using LoRA for the **Aura Chess AI Tournament**. It predicts high-quality chess moves in JSON format, given a move history, color, and a list of legal moves. --- ## 🧠 Model Objective The model learns to: - Choose the best legal move (`move`) - Give a short explanation (`reasoning`) in ≤10 words - Format responses as valid JSON - Respond in `[INST] ... [/INST]` format --- ## 💡 Input Format The model uses structured prompts: ```json [INST] You are a chess player. {"moveHistory": ["e4", "e5", "Nf3"], "possibleMoves": ["Nc3", "Bc4", "d4"], "color": "w"} [/INST] 🎯 Output Format Always a single-line JSON: json Copy Edit {"move": "Bc4", "reasoning": "Develops bishop and targets f7"} The move must be from possibleMoves The reasoning is free-form but short 🛠️ Training Details Base: TinyLlama-1.1B-Chat LoRA (8-bit): q_proj, k_proj, v_proj, o_proj Epochs: 3 Dataset: ~70 samples from master-level PGNs Format: instruction-style using transformers.Trainer 📈 Performance | Metric | Value | | ----------- | ----- | | Final loss | 1.08 | | Epochs | 3 | | Batch size | 1 | | Total steps | 51 | 🚀 Usage from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("Konvah/chess-tinyllama") tokenizer = AutoTokenizer.from_pretrained("Konvah/chess-tinyllama") prompt = """[INST] You are a chess player. {"moveHistory": ["e4", "e5", "Nf3"], "possibleMoves": ["Nc3", "Bc4", "d4"], "color": "w"} [/INST]""" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) 📎 License Open for research and tournament evaluation. Not intended for production without additional safety testing. ✍️ Author Ismail Abubakar (@boringcrypto_) Contact: abuismail842@gmail.com 🏆 Aura Tournament This model was created for the Aura Chess LLM Tournament to demonstrate reasoning and strategy prediction using open-source LLMs. ---