Konvah commited on
Commit
a6338b5
Β·
verified Β·
1 Parent(s): 862cabd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -36,3 +36,62 @@ The model uses structured prompts:
36
  You are a chess player.
37
  {"moveHistory": ["e4", "e5", "Nf3"], "possibleMoves": ["Nc3", "Bc4", "d4"], "color": "w"}
38
  [/INST]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  You are a chess player.
37
  {"moveHistory": ["e4", "e5", "Nf3"], "possibleMoves": ["Nc3", "Bc4", "d4"], "color": "w"}
38
  [/INST]
39
+
40
+ 🎯 Output Format
41
+ Always a single-line JSON:
42
+
43
+ json
44
+ Copy
45
+ Edit
46
+ {"move": "Bc4", "reasoning": "Develops bishop and targets f7"}
47
+ The move must be from possibleMoves
48
+
49
+ The reasoning is free-form but short
50
+
51
+ πŸ› οΈ Training Details
52
+ Base: TinyLlama-1.1B-Chat
53
+
54
+ LoRA (8-bit): q_proj, k_proj, v_proj, o_proj
55
+
56
+ Epochs: 3
57
+
58
+ Dataset: ~70 samples from master-level PGNs
59
+
60
+ Format: instruction-style using transformers.Trainer
61
+
62
+ πŸ“ˆ Performance
63
+ | Metric | Value |
64
+ | ----------- | ----- |
65
+ | Final loss | 1.08 |
66
+ | Epochs | 3 |
67
+ | Batch size | 1 |
68
+ | Total steps | 51 |
69
+
70
+ πŸš€ Usage
71
+ from transformers import AutoModelForCausalLM, AutoTokenizer
72
+
73
+ model = AutoModelForCausalLM.from_pretrained("Konvah/chess-tinyllama")
74
+ tokenizer = AutoTokenizer.from_pretrained("Konvah/chess-tinyllama")
75
+
76
+ prompt = """[INST]
77
+ You are a chess player.
78
+ {"moveHistory": ["e4", "e5", "Nf3"], "possibleMoves": ["Nc3", "Bc4", "d4"], "color": "w"}
79
+ [/INST]"""
80
+
81
+ inputs = tokenizer(prompt, return_tensors="pt")
82
+ outputs = model.generate(**inputs, max_new_tokens=50)
83
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
84
+
85
+ πŸ“Ž License
86
+ Open for research and tournament evaluation. Not intended for production without additional safety testing.
87
+
88
+ ✍️ Author
89
+ Ismail Abubakar (@boringcrypto_)
90
+
91
+ Contact: [email protected]
92
+
93
+ πŸ† Aura Tournament
94
+ This model was created for the Aura Chess LLM Tournament to demonstrate reasoning and strategy prediction using open-source LLMs.
95
+
96
+ ---
97
+