Kommunarus commited on
Commit
d20d6e6
·
1 Parent(s): 1ec43f2

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 275.21 +/- 19.21
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 289.97 +/- 7.68
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f865ff46a70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f865ff46b00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f865ff46b90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f865ff46c20>", "_build": "<function ActorCriticPolicy._build at 0x7f865ff46cb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f865ff46d40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f865ff46dd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f865ff46e60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f865ff46ef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f865ff46f80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f865ff47010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f865ff3c740>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 15007744, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652467789.3760211, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMEAH8AYJSMBmxyX2VuZJSMCGxyX3N0YXJ0lIaUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlGgwRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMEAH8AYJSMBmxyX2VuZJSMCGxyX3N0YXJ0lIaUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlGgwRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbGRjpxiBo+ARZFvuJW676FBTq+FymRvgAAAAAAAAAAZnACPaT8HbsSTA69TuQoPcdHgztNe2K6AACAPwAAgD8aonE9jtKXvOwiCz6e64w9BtOHvYAqxLsAAIA/AACAPzO1nDwUHJq6RRgbNVK+FjDiNke6qPtjtAAAgD8AAIA/zVZJvI9mWLrgOeG7Uv4GNrWsqTq4mXW1AACAPwAAgD/NQpA8FMSLuq26Xbo6KlK1vkvAOU6sgDkAAIA/AACAPzPWBT2P4n66jvzTvdx0OTzGPj48njQkvQAAgD8AAIA/TWypvT6Hpz5Kjas9Lm49v21/+L22AsQ9AAAAAAAAAABmeMG83D95vEo2HT7kAQs91jOSPWJSCr0AAIA/AACAP7PjM72fk7w/3oagvl0oVz02wCa9IqEWvgAAAAAAAAAAADYAvOE8n7rsgq66OreftRMumLd5Msk5AACAPwAAgD+9dU2+JOqhPjpd5z6sMj+/WB7cvS5dhj4AAAAAAAAAAJqBjjspGG66VP0uOi9LCbV5aD66XvlMuQAAgD8AAIA/ZsAYPKhmlryVsI68/NzBPEJVkT1Fp865AACAPwAAgD9gCw++KoVDP2gCn71dmUm/EO6kvu65bD0AAAAAAAAAAIa9BT7jeLs+gsZBvjHFML8+SjQ+DgxevgAAAAAAAAAAzWBMvCn0HLoLC4szKpdnr2UtgjsuOaWzAACAPwAAgD/Ndao8wfy0P85RaD4hQ529sn2+PGjaNz4AAAAAAAAAAM03lDyuPZe6upTuNmts0zGKCGu6qY8KtgAAgD8AAIA/ACAfvNdRLbuqqp26LUCdPNawX7zQ5YY9AACAPwAAgD8z4Rk8j4YIukLP6jqvJLM1srpIu8pvDLoAAIA/AACAP2b8arxcI1i6SfVGuHrVIbO77V67xqtpNwAAgD8AAIA/zQw+O6e4tj9guVE8oT/2vQv3Tj2S+7U9AAAAAAAAAACap608tFSsvEjka7yO2528DY8KvoUSgL0AAIA/AACAP01iWD1cKy+6AnxWPHz84LbeA1Q7uKLdtQAAgD8AAAAAZsoxPkC1pT9G6QA/XMzavp1A2D7g4/Q+AAAAAAAAAABmPkw8rsOSum5wQ7iNHi+zdWcFO90SYjcAAIA/AACAPzMk57x7Gpu6nzUOtYRYCa/zInq6djlbNAAAgD8AAIA/M/9vPBTcoLqCeYW8JaKLPKnbqToFPnM9AACAPwAAgD9abr+9AiZYP6scZL7dvma/9/WIvjJarb0AAAAAAAAAAAA4iDyuD5W6w1OqNmviNjEE0RO7PiTHtQAAgD8AAIA/2gb4vV/7sj+LwdO+EcC8vpUuRb7ANoG+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63Hfal2xcUCUhpRSlIwBbJRNCwGMAXSUR0DB6lVxwQ18dX2UKGgGaAloD0MI+S06WSoCc0CUhpRSlGgVS7toFkdAwepZwcYIjXV9lChoBmgJaA9DCLwH6L5c83FAlIaUUpRoFUu0aBZHQMHqYVct5D91fZQoaAZoCWgPQwha2NMOv4FzQJSGlFKUaBVL12gWR0DB6oUMqjJudX2UKGgGaAloD0MIWwacpaRpcECUhpRSlGgVS7xoFkdAweqVOerdWXV9lChoBmgJaA9DCKUuGccIBHNAlIaUUpRoFU0qAWgWR0DB6qf/7zkIdX2UKGgGaAloD0MIuCIxQY0BcUCUhpRSlGgVS7loFkdAweq0PluFYnV9lChoBmgJaA9DCLdFmQ1yUnBAlIaUUpRoFUvHaBZHQMHquR6F/QV1fZQoaAZoCWgPQwhtrprnCKByQJSGlFKUaBVNFQFoFkdAwerG7U5MlHV9lChoBmgJaA9DCFhWmpTCBnRAlIaUUpRoFUvYaBZHQMHqxvnKW9l1fZQoaAZoCWgPQwhq96sAnxVyQJSGlFKUaBVLwWgWR0DB6sy3I+4cdX2UKGgGaAloD0MIOlyrPWwJckCUhpRSlGgVS8ZoFkdAwerOVk+X7nV9lChoBmgJaA9DCA2nzM333XFAlIaUUpRoFU0bAWgWR0DB6tFBD5TIdX2UKGgGaAloD0MIpcACmPJ/ckCUhpRSlGgVS4xoFkdAwerYFOfukXV9lChoBmgJaA9DCGKDhZP0rHJAlIaUUpRoFU0IAWgWR0DB6tsN+b3HdX2UKGgGaAloD0MIey3ovfG/cUCUhpRSlGgVTRMBaBZHQMHq4E690zV1fZQoaAZoCWgPQwivQPSkzJByQJSGlFKUaBVLymgWR0DB6uLmp2lmdX2UKGgGaAloD0MIJEil2NEfdECUhpRSlGgVTZYBaBZHQMHq9skhRqJ1fZQoaAZoCWgPQwgoJ9pVSB9zQJSGlFKUaBVLtmgWR0DB6yhBRhttdX2UKGgGaAloD0MIPulEgukUckCUhpRSlGgVTY8DaBZHQMHrLkiUxEh1fZQoaAZoCWgPQwiyZfm6zKlxQJSGlFKUaBVL2GgWR0DB6zhvFWGRdX2UKGgGaAloD0MIvB+3Xz4OcUCUhpRSlGgVTV8BaBZHQMHrR2z4UN91fZQoaAZoCWgPQwiqY5XSMzhzQJSGlFKUaBVNOQFoFkdAwetMKOT7mHV9lChoBmgJaA9DCAsL7ge8gHJAlIaUUpRoFUuxaBZHQMHrUYtxuKp1fZQoaAZoCWgPQwhrRZvjHJRyQJSGlFKUaBVLtGgWR0DB61ptxdY5dX2UKGgGaAloD0MIRwN4C2SickCUhpRSlGgVTU4BaBZHQMHrZDFQ2uR1fZQoaAZoCWgPQwjJ42n5AZBxQJSGlFKUaBVL1GgWR0DB629rCWNWdX2UKGgGaAloD0MIeqhtwyi8cECUhpRSlGgVS6VoFkdAwetw7DEWI3V9lChoBmgJaA9DCNRhhVv+5XJAlIaUUpRoFU0mAWgWR0DB65OiWVu8dX2UKGgGaAloD0MITKYKRuUQcUCUhpRSlGgVTQ4BaBZHQMHrncMmWt51fZQoaAZoCWgPQwh/L4UHDZdyQJSGlFKUaBVLqmgWR0DB66eu1WsBdX2UKGgGaAloD0MIKSFYVe94c0CUhpRSlGgVTRwBaBZHQMHrrZ62OQ11fZQoaAZoCWgPQwhOCvMe56pxQJSGlFKUaBVLtWgWR0DB67Mf1YhddX2UKGgGaAloD0MI+3WnO8/jcECUhpRSlGgVS8hoFkdAwevB9VFQVXV9lChoBmgJaA9DCCr/Wl45xHJAlIaUUpRoFUvfaBZHQMHr0XDNyHV1fZQoaAZoCWgPQwj3yrxVV7luQJSGlFKUaBVLtWgWR0DB69Rda+vhdX2UKGgGaAloD0MItmYrL3l3ckCUhpRSlGgVS8hoFkdAwevqJkXk53V9lChoBmgJaA9DCLg81owMOnJAlIaUUpRoFUvOaBZHQMHr7iTlkpZ1fZQoaAZoCWgPQwgLfbCMTeBzQJSGlFKUaBVLsmgWR0DB6/Oy/sVtdX2UKGgGaAloD0MIoP6z5kcTc0CUhpRSlGgVS89oFkdAwewFHavicXV9lChoBmgJaA9DCI8YPbfQEnNAlIaUUpRoFU0uAWgWR0DB7A5L9MsZdX2UKGgGaAloD0MIxqcAGA/vcUCUhpRSlGgVTUIBaBZHQMHsE9K28Zl1fZQoaAZoCWgPQwgrUIvBw39wQJSGlFKUaBVNegJoFkdAwewbjUd7wHV9lChoBmgJaA9DCHVat0FttHJAlIaUUpRoFUvpaBZHQMHsH3GXHBF1fZQoaAZoCWgPQwj9pNqno9RyQJSGlFKUaBVNaAFoFkdAwewlXBguy3V9lChoBmgJaA9DCJrMeFspT3NAlIaUUpRoFUv5aBZHQMHsJ+LvTgF1fZQoaAZoCWgPQwhFuTR+YRdzQJSGlFKUaBVL/mgWR0DB7Cf5pJwsdX2UKGgGaAloD0MIryE4LqNEc0CUhpRSlGgVTQUBaBZHQMHsMBm5Dqp1fZQoaAZoCWgPQwjzyvW2mdxyQJSGlFKUaBVNAgJoFkdAwew4FsYVI3V9lChoBmgJaA9DCB1aZDvfzXRAlIaUUpRoFUu6aBZHQMHsRDyWiUR1fZQoaAZoCWgPQwgudCUClQBzQJSGlFKUaBVLwmgWR0DB7Fd3hXKbdX2UKGgGaAloD0MIOutTjgkbckCUhpRSlGgVS+loFkdAwexlwFTvRnV9lChoBmgJaA9DCOMcdXQct3NAlIaUUpRoFUvraBZHQMHsh75uZTh1fZQoaAZoCWgPQwijBP2FXtRxQJSGlFKUaBVLv2gWR0DB7KU96kZadX2UKGgGaAloD0MImIbhIyKMcECUhpRSlGgVS7xoFkdAweysnc+JQHV9lChoBmgJaA9DCDscXaV7jHNAlIaUUpRoFUvDaBZHQMHssMt9QXR1fZQoaAZoCWgPQwiBQGfS5qFxQJSGlFKUaBVL3mgWR0DB7L1iSaE0dX2UKGgGaAloD0MIXp1jQDavckCUhpRSlGgVTQIBaBZHQMHszTOX3QF1fZQoaAZoCWgPQwhTl4xjJAtzQJSGlFKUaBVL42gWR0DB7M5kNFz/dX2UKGgGaAloD0MIr0LKT6oEcUCUhpRSlGgVTREBaBZHQMHs1YYixFB1fZQoaAZoCWgPQwit/DIYY1RxQJSGlFKUaBVLp2gWR0DB7OmsA/9pdX2UKGgGaAloD0MI1O/C1qzpc0CUhpRSlGgVS9VoFkdAwezt+BpYcXV9lChoBmgJaA9DCLVwWYUNNHFAlIaUUpRoFUvIaBZHQMHs8k5yU9p1fZQoaAZoCWgPQwirJLIPMv1xQJSGlFKUaBVNjAFoFkdAwez8RoRIz3V9lChoBmgJaA9DCCxkrgyq13NAlIaUUpRoFUvkaBZHQMHtBYxDb8F1fZQoaAZoCWgPQwgiiPNwgmFxQJSGlFKUaBVLo2gWR0DB7QmUW2w3dX2UKGgGaAloD0MI6zpUU9KKcECUhpRSlGgVS6poFkdAwe0Jk2gnMXV9lChoBmgJaA9DCOkMjLzsWnNAlIaUUpRoFU1HAWgWR0DB7RUtbs4UdX2UKGgGaAloD0MIkpT0MHTtcUCUhpRSlGgVTQcBaBZHQMHtTNNi6QN1fZQoaAZoCWgPQwiY3v5ctMRzQJSGlFKUaBVNjAFoFkdAwe1VuO0b+HV9lChoBmgJaA9DCDKQZ5dvG3RAlIaUUpRoFUvRaBZHQMHtY2e6I311fZQoaAZoCWgPQwiBQdKn1W5zQJSGlFKUaBVNoQFoFkdAwe1q3EQ5FXV9lChoBmgJaA9DCMzwn27gY3FAlIaUUpRoFUvcaBZHQMHtiQ0fozN1fZQoaAZoCWgPQwh2jZYDvatyQJSGlFKUaBVNDwFoFkdAwe2Kwqy4WnV9lChoBmgJaA9DCDGW6ZeIZXJAlIaUUpRoFU0GAWgWR0DB7YwczZYgdX2UKGgGaAloD0MIdsJLcCpxc0CUhpRSlGgVTQABaBZHQMHtlw7DEWJ1fZQoaAZoCWgPQwj1K50PT/BzQJSGlFKUaBVL3WgWR0DB7ZnjENvwdX2UKGgGaAloD0MI0sYRa3GWcUCUhpRSlGgVS7ZoFkdAwe2l8ma6SXV9lChoBmgJaA9DCH+/mC0ZKHNAlIaUUpRoFU0gAWgWR0DB7aeoFV1fdX2UKGgGaAloD0MIXMgjuJHJckCUhpRSlGgVTSoBaBZHQMHtqMhHLA51fZQoaAZoCWgPQwiSPNf34eRzQJSGlFKUaBVNHAFoFkdAwe2o25QP7XV9lChoBmgJaA9DCKysbYpHonBAlIaUUpRoFUubaBZHQMHtrxZMcp91fZQoaAZoCWgPQwiKc9TR8VJvQJSGlFKUaBVNUgFoFkdAwe28HeJpFnV9lChoBmgJaA9DCK8+Hvru/lNAlIaUUpRoFUuBaBZHQMHtvYxL0z11fZQoaAZoCWgPQwh/aVGfJDJyQJSGlFKUaBVLxWgWR0DB7cytFKChdX2UKGgGaAloD0MIc9pTcs7eckCUhpRSlGgVS6JoFkdAwe3Zg/keZHV9lChoBmgJaA9DCDSD+MAO4nBAlIaUUpRoFUvHaBZHQMHt3WgnMMZ1fZQoaAZoCWgPQwhzZrtC39ZxQJSGlFKUaBVNCAFoFkdAwe3xv0AcUHV9lChoBmgJaA9DCF9DcFxGanNAlIaUUpRoFUujaBZHQMHt8u7QLNR1fZQoaAZoCWgPQwi+T1WhATdyQJSGlFKUaBVLxGgWR0DB7ffnhbW3dX2UKGgGaAloD0MIO+P74hK/cUCUhpRSlGgVTeQBaBZHQMHt/l+EytV1fZQoaAZoCWgPQwjN6EfD6eVxQJSGlFKUaBVNuAFoFkdAwe4RFvQ4THV9lChoBmgJaA9DCDfg88MILHJAlIaUUpRoFUvZaBZHQMHuFnoouwp1fZQoaAZoCWgPQwgC85Ap39VzQJSGlFKUaBVNHAFoFkdAwe4sn2Iwd3V9lChoBmgJaA9DCF6hD5axY3JAlIaUUpRoFU0JAWgWR0DB7k8Ao5PudX2UKGgGaAloD0MIWAG+27wCcUCUhpRSlGgVS8ZoFkdAwe5WD+R5knV9lChoBmgJaA9DCNLj9zb9q3BAlIaUUpRoFUvBaBZHQMHuV2ll9Sd1fZQoaAZoCWgPQwh3hqktdZxIQJSGlFKUaBVLhWgWR0DB7mn4qPOqdX2UKGgGaAloD0MI78hYbf73cUCUhpRSlGgVS5FoFkdAwe5rj94u9XV9lChoBmgJaA9DCBpQb0ZN7HJAlIaUUpRoFUuvaBZHQMHucnfVI7N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1832, "n_steps": 2048, "gamma": 1, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9uZXB0dW4vbWluaWNvbmRhMy9lbnZzL3BsY3Vycy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgBclIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL25lcHR1bi9taW5pY29uZGEzL2VudnMvcGxjdXJzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-27-generic-x86_64-with-glibc2.35 #28-Ubuntu SMP Thu Apr 14 04:55:28 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11d140aa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11d140ab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11d140ab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11d140ac20>", "_build": "<function ActorCriticPolicy._build at 0x7f11d140acb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f11d140ad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11d140add0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f11d140ae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11d140aef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11d140af80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11d140b010>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f11d1536080>"}, "verbose": 1, "policy_kwargs": {"net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 15007744, "_total_timesteps": 15000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652467789.3760211, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVdQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMCAFCUjAZscl9lbmSUjAhscl9zdGFydJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgbKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpRoMEc/UGJN0vGp/IWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVdQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMCAFCUjAZscl9lbmSUjAhscl9zdGFydJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgbKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpRoMEc/UGJN0vGp/IWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGbGRjpxiBo+ARZFvuJW676FBTq+FymRvgAAAAAAAAAAZnACPaT8HbsSTA69TuQoPcdHgztNe2K6AACAPwAAgD8aonE9jtKXvOwiCz6e64w9BtOHvYAqxLsAAIA/AACAPzO1nDwUHJq6RRgbNVK+FjDiNke6qPtjtAAAgD8AAIA/zVZJvI9mWLrgOeG7Uv4GNrWsqTq4mXW1AACAPwAAgD/NQpA8FMSLuq26Xbo6KlK1vkvAOU6sgDkAAIA/AACAPzPWBT2P4n66jvzTvdx0OTzGPj48njQkvQAAgD8AAIA/TWypvT6Hpz5Kjas9Lm49v21/+L22AsQ9AAAAAAAAAABmeMG83D95vEo2HT7kAQs91jOSPWJSCr0AAIA/AACAP7PjM72fk7w/3oagvl0oVz02wCa9IqEWvgAAAAAAAAAAADYAvOE8n7rsgq66OreftRMumLd5Msk5AACAPwAAgD+9dU2+JOqhPjpd5z6sMj+/WB7cvS5dhj4AAAAAAAAAAJqBjjspGG66VP0uOi9LCbV5aD66XvlMuQAAgD8AAIA/ZsAYPKhmlryVsI68/NzBPEJVkT1Fp865AACAPwAAgD9gCw++KoVDP2gCn71dmUm/EO6kvu65bD0AAAAAAAAAAIa9BT7jeLs+gsZBvjHFML8+SjQ+DgxevgAAAAAAAAAAzWBMvCn0HLoLC4szKpdnr2UtgjsuOaWzAACAPwAAgD/Ndao8wfy0P85RaD4hQ529sn2+PGjaNz4AAAAAAAAAAM03lDyuPZe6upTuNmts0zGKCGu6qY8KtgAAgD8AAIA/ACAfvNdRLbuqqp26LUCdPNawX7zQ5YY9AACAPwAAgD8z4Rk8j4YIukLP6jqvJLM1srpIu8pvDLoAAIA/AACAP2b8arxcI1i6SfVGuHrVIbO77V67xqtpNwAAgD8AAIA/zQw+O6e4tj9guVE8oT/2vQv3Tj2S+7U9AAAAAAAAAACap608tFSsvEjka7yO2528DY8KvoUSgL0AAIA/AACAP01iWD1cKy+6AnxWPHz84LbeA1Q7uKLdtQAAgD8AAAAAZsoxPkC1pT9G6QA/XMzavp1A2D7g4/Q+AAAAAAAAAABmPkw8rsOSum5wQ7iNHi+zdWcFO90SYjcAAIA/AACAPzMk57x7Gpu6nzUOtYRYCa/zInq6djlbNAAAgD8AAIA/M/9vPBTcoLqCeYW8JaKLPKnbqToFPnM9AACAPwAAgD9abr+9AiZYP6scZL7dvma/9/WIvjJarb0AAAAAAAAAAAA4iDyuD5W6w1OqNmviNjEE0RO7PiTHtQAAgD8AAIA/2gb4vV/7sj+LwdO+EcC8vpUuRb7ANoG+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0005162666666667093, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63Hfal2xcUCUhpRSlIwBbJRNCwGMAXSUR0DB6lVxwQ18dX2UKGgGaAloD0MI+S06WSoCc0CUhpRSlGgVS7toFkdAwepZwcYIjXV9lChoBmgJaA9DCLwH6L5c83FAlIaUUpRoFUu0aBZHQMHqYVct5D91fZQoaAZoCWgPQwha2NMOv4FzQJSGlFKUaBVL12gWR0DB6oUMqjJudX2UKGgGaAloD0MIWwacpaRpcECUhpRSlGgVS7xoFkdAweqVOerdWXV9lChoBmgJaA9DCKUuGccIBHNAlIaUUpRoFU0qAWgWR0DB6qf/7zkIdX2UKGgGaAloD0MIuCIxQY0BcUCUhpRSlGgVS7loFkdAweq0PluFYnV9lChoBmgJaA9DCLdFmQ1yUnBAlIaUUpRoFUvHaBZHQMHquR6F/QV1fZQoaAZoCWgPQwhtrprnCKByQJSGlFKUaBVNFQFoFkdAwerG7U5MlHV9lChoBmgJaA9DCFhWmpTCBnRAlIaUUpRoFUvYaBZHQMHqxvnKW9l1fZQoaAZoCWgPQwhq96sAnxVyQJSGlFKUaBVLwWgWR0DB6sy3I+4cdX2UKGgGaAloD0MIOlyrPWwJckCUhpRSlGgVS8ZoFkdAwerOVk+X7nV9lChoBmgJaA9DCA2nzM333XFAlIaUUpRoFU0bAWgWR0DB6tFBD5TIdX2UKGgGaAloD0MIpcACmPJ/ckCUhpRSlGgVS4xoFkdAwerYFOfukXV9lChoBmgJaA9DCGKDhZP0rHJAlIaUUpRoFU0IAWgWR0DB6tsN+b3HdX2UKGgGaAloD0MIey3ovfG/cUCUhpRSlGgVTRMBaBZHQMHq4E690zV1fZQoaAZoCWgPQwivQPSkzJByQJSGlFKUaBVLymgWR0DB6uLmp2lmdX2UKGgGaAloD0MIJEil2NEfdECUhpRSlGgVTZYBaBZHQMHq9skhRqJ1fZQoaAZoCWgPQwgoJ9pVSB9zQJSGlFKUaBVLtmgWR0DB6yhBRhttdX2UKGgGaAloD0MIPulEgukUckCUhpRSlGgVTY8DaBZHQMHrLkiUxEh1fZQoaAZoCWgPQwiyZfm6zKlxQJSGlFKUaBVL2GgWR0DB6zhvFWGRdX2UKGgGaAloD0MIvB+3Xz4OcUCUhpRSlGgVTV8BaBZHQMHrR2z4UN91fZQoaAZoCWgPQwiqY5XSMzhzQJSGlFKUaBVNOQFoFkdAwetMKOT7mHV9lChoBmgJaA9DCAsL7ge8gHJAlIaUUpRoFUuxaBZHQMHrUYtxuKp1fZQoaAZoCWgPQwhrRZvjHJRyQJSGlFKUaBVLtGgWR0DB61ptxdY5dX2UKGgGaAloD0MIRwN4C2SickCUhpRSlGgVTU4BaBZHQMHrZDFQ2uR1fZQoaAZoCWgPQwjJ42n5AZBxQJSGlFKUaBVL1GgWR0DB629rCWNWdX2UKGgGaAloD0MIeqhtwyi8cECUhpRSlGgVS6VoFkdAwetw7DEWI3V9lChoBmgJaA9DCNRhhVv+5XJAlIaUUpRoFU0mAWgWR0DB65OiWVu8dX2UKGgGaAloD0MITKYKRuUQcUCUhpRSlGgVTQ4BaBZHQMHrncMmWt51fZQoaAZoCWgPQwh/L4UHDZdyQJSGlFKUaBVLqmgWR0DB66eu1WsBdX2UKGgGaAloD0MIKSFYVe94c0CUhpRSlGgVTRwBaBZHQMHrrZ62OQ11fZQoaAZoCWgPQwhOCvMe56pxQJSGlFKUaBVLtWgWR0DB67Mf1YhddX2UKGgGaAloD0MI+3WnO8/jcECUhpRSlGgVS8hoFkdAwevB9VFQVXV9lChoBmgJaA9DCCr/Wl45xHJAlIaUUpRoFUvfaBZHQMHr0XDNyHV1fZQoaAZoCWgPQwj3yrxVV7luQJSGlFKUaBVLtWgWR0DB69Rda+vhdX2UKGgGaAloD0MItmYrL3l3ckCUhpRSlGgVS8hoFkdAwevqJkXk53V9lChoBmgJaA9DCLg81owMOnJAlIaUUpRoFUvOaBZHQMHr7iTlkpZ1fZQoaAZoCWgPQwgLfbCMTeBzQJSGlFKUaBVLsmgWR0DB6/Oy/sVtdX2UKGgGaAloD0MIoP6z5kcTc0CUhpRSlGgVS89oFkdAwewFHavicXV9lChoBmgJaA9DCI8YPbfQEnNAlIaUUpRoFU0uAWgWR0DB7A5L9MsZdX2UKGgGaAloD0MIxqcAGA/vcUCUhpRSlGgVTUIBaBZHQMHsE9K28Zl1fZQoaAZoCWgPQwgrUIvBw39wQJSGlFKUaBVNegJoFkdAwewbjUd7wHV9lChoBmgJaA9DCHVat0FttHJAlIaUUpRoFUvpaBZHQMHsH3GXHBF1fZQoaAZoCWgPQwj9pNqno9RyQJSGlFKUaBVNaAFoFkdAwewlXBguy3V9lChoBmgJaA9DCJrMeFspT3NAlIaUUpRoFUv5aBZHQMHsJ+LvTgF1fZQoaAZoCWgPQwhFuTR+YRdzQJSGlFKUaBVL/mgWR0DB7Cf5pJwsdX2UKGgGaAloD0MIryE4LqNEc0CUhpRSlGgVTQUBaBZHQMHsMBm5Dqp1fZQoaAZoCWgPQwjzyvW2mdxyQJSGlFKUaBVNAgJoFkdAwew4FsYVI3V9lChoBmgJaA9DCB1aZDvfzXRAlIaUUpRoFUu6aBZHQMHsRDyWiUR1fZQoaAZoCWgPQwgudCUClQBzQJSGlFKUaBVLwmgWR0DB7Fd3hXKbdX2UKGgGaAloD0MIOutTjgkbckCUhpRSlGgVS+loFkdAwexlwFTvRnV9lChoBmgJaA9DCOMcdXQct3NAlIaUUpRoFUvraBZHQMHsh75uZTh1fZQoaAZoCWgPQwijBP2FXtRxQJSGlFKUaBVLv2gWR0DB7KU96kZadX2UKGgGaAloD0MImIbhIyKMcECUhpRSlGgVS7xoFkdAweysnc+JQHV9lChoBmgJaA9DCDscXaV7jHNAlIaUUpRoFUvDaBZHQMHssMt9QXR1fZQoaAZoCWgPQwiBQGfS5qFxQJSGlFKUaBVL3mgWR0DB7L1iSaE0dX2UKGgGaAloD0MIXp1jQDavckCUhpRSlGgVTQIBaBZHQMHszTOX3QF1fZQoaAZoCWgPQwhTl4xjJAtzQJSGlFKUaBVL42gWR0DB7M5kNFz/dX2UKGgGaAloD0MIr0LKT6oEcUCUhpRSlGgVTREBaBZHQMHs1YYixFB1fZQoaAZoCWgPQwit/DIYY1RxQJSGlFKUaBVLp2gWR0DB7OmsA/9pdX2UKGgGaAloD0MI1O/C1qzpc0CUhpRSlGgVS9VoFkdAwezt+BpYcXV9lChoBmgJaA9DCLVwWYUNNHFAlIaUUpRoFUvIaBZHQMHs8k5yU9p1fZQoaAZoCWgPQwirJLIPMv1xQJSGlFKUaBVNjAFoFkdAwez8RoRIz3V9lChoBmgJaA9DCCxkrgyq13NAlIaUUpRoFUvkaBZHQMHtBYxDb8F1fZQoaAZoCWgPQwgiiPNwgmFxQJSGlFKUaBVLo2gWR0DB7QmUW2w3dX2UKGgGaAloD0MI6zpUU9KKcECUhpRSlGgVS6poFkdAwe0Jk2gnMXV9lChoBmgJaA9DCOkMjLzsWnNAlIaUUpRoFU1HAWgWR0DB7RUtbs4UdX2UKGgGaAloD0MIkpT0MHTtcUCUhpRSlGgVTQcBaBZHQMHtTNNi6QN1fZQoaAZoCWgPQwiY3v5ctMRzQJSGlFKUaBVNjAFoFkdAwe1VuO0b+HV9lChoBmgJaA9DCDKQZ5dvG3RAlIaUUpRoFUvRaBZHQMHtY2e6I311fZQoaAZoCWgPQwiBQdKn1W5zQJSGlFKUaBVNoQFoFkdAwe1q3EQ5FXV9lChoBmgJaA9DCMzwn27gY3FAlIaUUpRoFUvcaBZHQMHtiQ0fozN1fZQoaAZoCWgPQwh2jZYDvatyQJSGlFKUaBVNDwFoFkdAwe2Kwqy4WnV9lChoBmgJaA9DCDGW6ZeIZXJAlIaUUpRoFU0GAWgWR0DB7YwczZYgdX2UKGgGaAloD0MIdsJLcCpxc0CUhpRSlGgVTQABaBZHQMHtlw7DEWJ1fZQoaAZoCWgPQwj1K50PT/BzQJSGlFKUaBVL3WgWR0DB7ZnjENvwdX2UKGgGaAloD0MI0sYRa3GWcUCUhpRSlGgVS7ZoFkdAwe2l8ma6SXV9lChoBmgJaA9DCH+/mC0ZKHNAlIaUUpRoFU0gAWgWR0DB7aeoFV1fdX2UKGgGaAloD0MIXMgjuJHJckCUhpRSlGgVTSoBaBZHQMHtqMhHLA51fZQoaAZoCWgPQwiSPNf34eRzQJSGlFKUaBVNHAFoFkdAwe2o25QP7XV9lChoBmgJaA9DCKysbYpHonBAlIaUUpRoFUubaBZHQMHtrxZMcp91fZQoaAZoCWgPQwiKc9TR8VJvQJSGlFKUaBVNUgFoFkdAwe28HeJpFnV9lChoBmgJaA9DCK8+Hvru/lNAlIaUUpRoFUuBaBZHQMHtvYxL0z11fZQoaAZoCWgPQwh/aVGfJDJyQJSGlFKUaBVLxWgWR0DB7cytFKChdX2UKGgGaAloD0MIc9pTcs7eckCUhpRSlGgVS6JoFkdAwe3Zg/keZHV9lChoBmgJaA9DCDSD+MAO4nBAlIaUUpRoFUvHaBZHQMHt3WgnMMZ1fZQoaAZoCWgPQwhzZrtC39ZxQJSGlFKUaBVNCAFoFkdAwe3xv0AcUHV9lChoBmgJaA9DCF9DcFxGanNAlIaUUpRoFUujaBZHQMHt8u7QLNR1fZQoaAZoCWgPQwi+T1WhATdyQJSGlFKUaBVLxGgWR0DB7ffnhbW3dX2UKGgGaAloD0MIO+P74hK/cUCUhpRSlGgVTeQBaBZHQMHt/l+EytV1fZQoaAZoCWgPQwjN6EfD6eVxQJSGlFKUaBVNuAFoFkdAwe4RFvQ4THV9lChoBmgJaA9DCDfg88MILHJAlIaUUpRoFUvZaBZHQMHuFnoouwp1fZQoaAZoCWgPQwgC85Ap39VzQJSGlFKUaBVNHAFoFkdAwe4sn2Iwd3V9lChoBmgJaA9DCF6hD5axY3JAlIaUUpRoFU0JAWgWR0DB7k8Ao5PudX2UKGgGaAloD0MIWAG+27wCcUCUhpRSlGgVS8ZoFkdAwe5WD+R5knV9lChoBmgJaA9DCNLj9zb9q3BAlIaUUpRoFUvBaBZHQMHuV2ll9Sd1fZQoaAZoCWgPQwh3hqktdZxIQJSGlFKUaBVLhWgWR0DB7mn4qPOqdX2UKGgGaAloD0MI78hYbf73cUCUhpRSlGgVS5FoFkdAwe5rj94u9XV9lChoBmgJaA9DCBpQb0ZN7HJAlIaUUpRoFUuvaBZHQMHucnfVI7N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1832, "n_steps": 2048, "gamma": 1, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGIvaG9tZS9uZXB0dW4vbWluaWNvbmRhMy9lbnZzL3BsY3Vycy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgBclIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYi9ob21lL25lcHR1bi9taW5pY29uZGEzL2VudnMvcGxjdXJzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-27-generic-x86_64-with-glibc2.35 #28-Ubuntu SMP Thu Apr 14 04:55:28 UTC 2022", "Python": "3.10.4", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo_v13-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f94a0d25f0162870b1f7b89c595f9fb79a9449b455ae438b91ed36fffb373adc
3
  size 460023
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bea214ea0329afa5477b834ae6f07cf8660f02a890d7ec12d7afe3b808911a37
3
  size 460023
ppo_v13-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f865ff46a70>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f865ff46b00>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f865ff46b90>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f865ff46c20>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f865ff46cb0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f865ff46d40>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f865ff46dd0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f865ff46e60>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f865ff46ef0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f865ff46f80>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f865ff47010>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc._abc_data object at 0x7f865ff3c740>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
@@ -63,12 +63,12 @@
63
  "start_time": 1652467789.3760211,
64
  "learning_rate": {
65
  ":type:": "<class 'function'>",
66
- ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMEAH8AYJSMBmxyX2VuZJSMCGxyX3N0YXJ0lIaUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlGgwRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
67
  },
68
  "tensorboard_log": null,
69
  "lr_schedule": {
70
  ":type:": "<class 'function'>",
71
- ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMEAH8AYJSMBmxyX2VuZJSMCGxyX3N0YXJ0lIaUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaBspUpSGlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7k+LWI42jxhZRSlGgwRz9QYk3S8an8hZRSlIaUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f11d140aa70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f11d140ab00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f11d140ab90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f11d140ac20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f11d140acb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f11d140ad40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f11d140add0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f11d140ae60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f11d140aef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f11d140af80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f11d140b010>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f11d1536080>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
 
63
  "start_time": 1652467789.3760211,
64
  "learning_rate": {
65
  ":type:": "<class 'function'>",
66
+ ":serialized:": "gAWVdQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMCAFCUjAZscl9lbmSUjAhscl9zdGFydJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgbKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpRoMEc/UGJN0vGp/IWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
67
  },
68
  "tensorboard_log": null,
69
  "lr_schedule": {
70
  ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVdQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwNLE0MUfACIARQAZAF8ABgAiAAUABcAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMLC9ob21lL25lcHR1bi9QeWNoYXJtUHJvamVjdHMvcGxjdXJzL3VuaXQxLnB5lIwEZnVuY5RLDEMCAFCUjAZscl9lbmSUjAhscl9zdGFydJSGlCl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgbKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc+5Pi1iONo8YWUUpRoMEc/UGJN0vGp/IWUUpSGlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ded57f2a9165272402616443ba158752d159969d6968e8b73e305592da6c4eb
3
- size 181173
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b298dbb4419dbf62acbbe09c8e2b8defe0c3ef50934c7067fde855ba9c1d35af
3
+ size 188351
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 275.20521105846075, "std_reward": 19.213018539633058, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T00:24:07.464972"}
 
1
+ {"mean_reward": 289.96628814225147, "std_reward": 7.677656889871106, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T00:25:25.431343"}