Commit
·
b4c4140
1
Parent(s):
efb6584
initial release
Browse files- README.md +33 -0
- config.json +0 -0
- maker.py +99 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +68 -0
- ud.py +121 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "lzh"
|
4 |
+
tags:
|
5 |
+
- "classical chinese"
|
6 |
+
- "literary chinese"
|
7 |
+
- "ancient chinese"
|
8 |
+
- "token-classification"
|
9 |
+
- "pos"
|
10 |
+
- "dependency-parsing"
|
11 |
+
base_model: KoichiYasuoka/modernbert-large-classical-chinese
|
12 |
+
datasets:
|
13 |
+
- "universal_dependencies"
|
14 |
+
license: "apache-2.0"
|
15 |
+
pipeline_tag: "token-classification"
|
16 |
+
widget:
|
17 |
+
- text: "孟子見梁惠王"
|
18 |
+
---
|
19 |
+
|
20 |
+
# modernbert-large-classical-chinese-ud-triangular
|
21 |
+
|
22 |
+
## Model Description
|
23 |
+
|
24 |
+
This is a ModernBERT model pretrained on Classical Chinese texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [modernbert-large-classical-chinese](https://huggingface.co/KoichiYasuoka/modernbert-large-classical-chinese) and [UD_Classical_Chinese-Kyoto](https://github.com/UniversalDependencies/UD_Classical_Chinese-Kyoto).
|
25 |
+
|
26 |
+
## How to Use
|
27 |
+
|
28 |
+
```py
|
29 |
+
from transformers import pipeline
|
30 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/modernbert-large-classical-chinese-ud-triangular",trust_remote_code=True,aggregation_strategy="simple")
|
31 |
+
print(nlp("孟子見梁惠王"))
|
32 |
+
```
|
33 |
+
|
config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
maker.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/modernbert-large-classical-chinese"
|
3 |
+
tgt="KoichiYasuoka/modernbert-large-classical-chinese-ud-triangular"
|
4 |
+
url="https://github.com/UniversalDependencies/UD_Classical_Chinese-Kyoto"
|
5 |
+
import os
|
6 |
+
d=os.path.basename(url)
|
7 |
+
os.system("test -d "+d+" || git clone --depth=1 "+url)
|
8 |
+
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
|
9 |
+
class UDTriangularDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer):
|
11 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
12 |
+
self.tokenizer=tokenizer
|
13 |
+
self.seeks=[0]
|
14 |
+
label=set(["SYM|x","X|x"])
|
15 |
+
dep=set(["X|x|r-goeswith"])
|
16 |
+
s=self.conllu.readline()
|
17 |
+
while s!="":
|
18 |
+
if s=="\n":
|
19 |
+
self.seeks.append(self.conllu.tell())
|
20 |
+
else:
|
21 |
+
w=s.split("\t")
|
22 |
+
if len(w)==10:
|
23 |
+
if w[0].isdecimal():
|
24 |
+
p=w[3]
|
25 |
+
q="" if w[5]=="_" else "|"+w[5]
|
26 |
+
d=("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7]
|
27 |
+
label.add(p+"|o"+q)
|
28 |
+
label.add(p+"|x"+q)
|
29 |
+
dep.add(p+"|o"+q+d)
|
30 |
+
dep.add(p+"|x"+q+d)
|
31 |
+
s=self.conllu.readline()
|
32 |
+
lid={l:i for i,l in enumerate(sorted(label))}
|
33 |
+
for i,d in enumerate(sorted(dep),len(lid)):
|
34 |
+
lid[d]=i
|
35 |
+
self.label2id=lid
|
36 |
+
def __call__(*args):
|
37 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
38 |
+
for t in args:
|
39 |
+
t.label2id=lid
|
40 |
+
return lid
|
41 |
+
def __del__(self):
|
42 |
+
self.conllu.close()
|
43 |
+
__len__=lambda self:len(self.seeks)-1
|
44 |
+
def __getitem__(self,i):
|
45 |
+
s=self.seeks[i]
|
46 |
+
self.conllu.seek(s)
|
47 |
+
c,t=[],[""]
|
48 |
+
while t[0]!="\n":
|
49 |
+
t=self.conllu.readline().split("\t")
|
50 |
+
if len(t)==10 and t[0].isdecimal():
|
51 |
+
c.append(t)
|
52 |
+
v=self.tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
53 |
+
for i in range(len(v)-1,-1,-1):
|
54 |
+
for j in range(1,len(v[i])):
|
55 |
+
c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
|
56 |
+
y=["0"]+[t[0] for t in c]
|
57 |
+
h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
|
58 |
+
x=["o" if k>i or sum([1 if j==i+1 else 0 for j in h[i+1:]])>0 else "x" for i,k in enumerate(h)]
|
59 |
+
p=[t[3]+"|"+x[i] if t[5]=="_" else t[3]+"|"+x[i]+"|"+t[5] for i,t in enumerate(c)]
|
60 |
+
d=[t[7] if t[6]=="0" else "l-"+t[7] if int(t[0])<int(t[6]) else "r-"+t[7] for t in c]
|
61 |
+
v=sum(v,[])
|
62 |
+
ids=[self.tokenizer.cls_token_id]
|
63 |
+
upos=["SYM|x"]
|
64 |
+
for i,k in enumerate(v):
|
65 |
+
if len(v)<127 or x[i]=="o":
|
66 |
+
ids.append(k)
|
67 |
+
upos.append(p[i]+"|"+d[i] if h[i]==i+1 else p[i])
|
68 |
+
for j in range(i+1,len(v)):
|
69 |
+
ids.append(v[j])
|
70 |
+
upos.append(p[j]+"|"+d[j] if h[j]==i+1 else p[i]+"|"+d[i] if h[i]==j+1 else p[j])
|
71 |
+
ids.append(self.tokenizer.sep_token_id)
|
72 |
+
upos.append("SYM|x")
|
73 |
+
i=0
|
74 |
+
while len(ids)>8192:
|
75 |
+
try:
|
76 |
+
i=ids.index(self.tokenizer.sep_token_id,ids.index(self.tokenizer.sep_token_id,i+1)+1)-1
|
77 |
+
except:
|
78 |
+
break
|
79 |
+
while len(ids)>8192 and ids[i]!=self.tokenizer.sep_token_id:
|
80 |
+
if upos[i].endswith("|x"):
|
81 |
+
ids.pop(i)
|
82 |
+
upos.pop(i)
|
83 |
+
i-=1
|
84 |
+
else:
|
85 |
+
break
|
86 |
+
return {"input_ids":ids[:8192],"labels":[self.label2id[p] for p in upos[:8192]]}
|
87 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
88 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
89 |
+
trainDS=UDTriangularDataset("train.conllu",tkz)
|
90 |
+
devDS=UDTriangularDataset("dev.conllu",tkz)
|
91 |
+
testDS=UDTriangularDataset("test.conllu",tkz)
|
92 |
+
lid=trainDS(devDS,testDS)
|
93 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True,trust_remote_code=True)
|
94 |
+
mdl=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True,trust_remote_code=True)
|
95 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=1,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
96 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=mdl,train_dataset=trainDS)
|
97 |
+
trn.train()
|
98 |
+
trn.save_model(tgt)
|
99 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb8e8df139fa73232c28276261dbe9972cb560002cbff876a414c0a849dc04b9
|
3 |
+
size 1485600194
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_input_names": [
|
51 |
+
"input_ids",
|
52 |
+
"attention_mask"
|
53 |
+
],
|
54 |
+
"model_max_length": 1000000000000000019884624838656,
|
55 |
+
"never_split": [
|
56 |
+
"[CLS]",
|
57 |
+
"[PAD]",
|
58 |
+
"[SEP]",
|
59 |
+
"[UNK]",
|
60 |
+
"[MASK]"
|
61 |
+
],
|
62 |
+
"pad_token": "[PAD]",
|
63 |
+
"sep_token": "[SEP]",
|
64 |
+
"strip_accents": false,
|
65 |
+
"tokenize_chinese_chars": true,
|
66 |
+
"tokenizer_class": "BertTokenizerFast",
|
67 |
+
"unk_token": "[UNK]"
|
68 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
from transformers import TokenClassificationPipeline
|
3 |
+
|
4 |
+
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
5 |
+
def __init__(self,**kwargs):
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
x=self.model.config.label2id
|
8 |
+
self.root=numpy.full((len(x)),-numpy.inf)
|
9 |
+
self.left_arc=numpy.full((len(x)),-numpy.inf)
|
10 |
+
self.right_arc=numpy.full((len(x)),-numpy.inf)
|
11 |
+
for k,v in x.items():
|
12 |
+
if k.endswith("|root"):
|
13 |
+
self.root[v]=0
|
14 |
+
elif k.find("|l-")>0:
|
15 |
+
self.left_arc[v]=0
|
16 |
+
elif k.find("|r-")>0:
|
17 |
+
self.right_arc[v]=0
|
18 |
+
def check_model_type(self,supported_models):
|
19 |
+
pass
|
20 |
+
def postprocess(self,model_outputs,**kwargs):
|
21 |
+
import torch
|
22 |
+
if "logits" not in model_outputs:
|
23 |
+
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
|
24 |
+
m=model_outputs["logits"][0].cpu().numpy()
|
25 |
+
k=numpy.argmax(m,axis=1).tolist()
|
26 |
+
x=[self.model.config.id2label[i].split("|")[1]=="o" for i in k[1:-1]]
|
27 |
+
v=model_outputs["input_ids"][0].tolist()
|
28 |
+
off=model_outputs["offset_mapping"][0].tolist()
|
29 |
+
for i,(s,e) in reversed(list(enumerate(off))):
|
30 |
+
if s<e:
|
31 |
+
d=model_outputs["sentence"][s:e]
|
32 |
+
j=len(d)-len(d.lstrip())
|
33 |
+
if j>0:
|
34 |
+
d=d.lstrip()
|
35 |
+
off[i][0]+=j
|
36 |
+
j=len(d)-len(d.rstrip())
|
37 |
+
if j>0:
|
38 |
+
d=d.rstrip()
|
39 |
+
off[i][1]-=j
|
40 |
+
if d.strip()=="":
|
41 |
+
off.pop(i)
|
42 |
+
v.pop(i)
|
43 |
+
x.pop(i-1)
|
44 |
+
if len(x)<127:
|
45 |
+
x=[True]*len(x)
|
46 |
+
else:
|
47 |
+
w=sum([len(x)-i+1 if b else 0 for i,b in enumerate(x)])+1
|
48 |
+
for i in numpy.argsort(numpy.max(m,axis=1)[1:-1]):
|
49 |
+
if x[i]==False and w+len(x)-i<8192:
|
50 |
+
x[i]=True
|
51 |
+
w+=len(x)-i+1
|
52 |
+
w=[self.tokenizer.cls_token_id]
|
53 |
+
for i,j in enumerate(x):
|
54 |
+
if j:
|
55 |
+
w+=v[i+1:]
|
56 |
+
with torch.no_grad():
|
57 |
+
e=self.model(input_ids=torch.tensor([w]).to(self.device))
|
58 |
+
m=e.logits[0].cpu().numpy()
|
59 |
+
w=len(v)-2
|
60 |
+
e=numpy.full((w,w,m.shape[-1]),m.min())
|
61 |
+
k=1
|
62 |
+
for i in range(w):
|
63 |
+
if x[i]:
|
64 |
+
e[i,i]=m[k]+self.root
|
65 |
+
k+=1
|
66 |
+
for j in range(1,w-i):
|
67 |
+
e[i+j,i]=m[k]+self.left_arc
|
68 |
+
e[i,i+j]=m[k]+self.right_arc
|
69 |
+
k+=1
|
70 |
+
k+=1
|
71 |
+
g=self.model.config.label2id["X|x|r-goeswith"]
|
72 |
+
m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
|
73 |
+
for i in range(e.shape[0]):
|
74 |
+
for j in range(i+2,e.shape[1]):
|
75 |
+
r[i,j]=1
|
76 |
+
if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
|
77 |
+
r[i,j]=r[i,j-1]
|
78 |
+
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
|
79 |
+
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
|
80 |
+
h=self.chu_liu_edmonds(m)
|
81 |
+
z=[i for i,j in enumerate(h) if i==j]
|
82 |
+
if len(z)>1:
|
83 |
+
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
|
84 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
85 |
+
h=self.chu_liu_edmonds(m)
|
86 |
+
v=[(s,e) for s,e in off if s<e]
|
87 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
88 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
89 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
90 |
+
if j[-1]=="r-goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"r-goeswith"}:
|
91 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
92 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
93 |
+
q.pop(i)
|
94 |
+
elif v[i-1][1]>v[i][0]:
|
95 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
96 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
97 |
+
q.pop(i)
|
98 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
99 |
+
u="# text = "+t+"\n"
|
100 |
+
for i,(s,e) in enumerate(v):
|
101 |
+
u+="\t".join([str(i+1),t[s:e],t[s:e],q[i][0],"_","_" if len(q[i])<4 else "|".join(q[i][2:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
102 |
+
return u+"\n"
|
103 |
+
def chu_liu_edmonds(self,matrix):
|
104 |
+
h=numpy.argmax(matrix,axis=0)
|
105 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
106 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
107 |
+
y=[]
|
108 |
+
while x!=y:
|
109 |
+
y=list(x)
|
110 |
+
for i,j in enumerate(x):
|
111 |
+
x[i]=b(x,i,j)
|
112 |
+
if max(x)<0:
|
113 |
+
return h
|
114 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
115 |
+
z=matrix-numpy.max(matrix,axis=0)
|
116 |
+
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
|
117 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
118 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
119 |
+
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
120 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
121 |
+
return h
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|