Commit
·
5da8d2e
1
Parent(s):
f65aba2
Update README.md
Browse files
README.md
CHANGED
@@ -1,88 +1,27 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
-
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
<!--- Describe your model here -->
|
15 |
-
|
16 |
-
## Usage (Sentence-Transformers)
|
17 |
-
|
18 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
-
|
20 |
-
```
|
21 |
-
pip install -U sentence-transformers
|
22 |
-
```
|
23 |
-
|
24 |
-
Then you can use the model like this:
|
25 |
-
|
26 |
-
```python
|
27 |
-
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
-
|
30 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
-
embeddings = model.encode(sentences)
|
32 |
-
print(embeddings)
|
33 |
-
```
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
## Evaluation Results
|
38 |
-
|
39 |
-
<!--- Describe how your model was evaluated -->
|
40 |
-
|
41 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
-
|
43 |
-
|
44 |
-
## Training
|
45 |
-
The model was trained with the parameters:
|
46 |
-
|
47 |
-
**DataLoader**:
|
48 |
-
|
49 |
-
`torch.utils.data.dataloader.DataLoader` of length 133200 with parameters:
|
50 |
-
```
|
51 |
-
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
-
```
|
53 |
-
|
54 |
-
**Loss**:
|
55 |
-
|
56 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
57 |
|
58 |
-
Parameters of the fit()-Method:
|
59 |
-
```
|
60 |
-
{
|
61 |
-
"epochs": 2,
|
62 |
-
"evaluation_steps": 0,
|
63 |
-
"evaluator": "NoneType",
|
64 |
-
"max_grad_norm": 1,
|
65 |
-
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
66 |
-
"optimizer_params": {
|
67 |
-
"lr": 2e-05
|
68 |
-
},
|
69 |
-
"scheduler": "WarmupLinear",
|
70 |
-
"steps_per_epoch": 266400,
|
71 |
-
"warmup_steps": 26640,
|
72 |
-
"weight_decay": 0.01
|
73 |
-
}
|
74 |
-
```
|
75 |
|
76 |
|
77 |
-
|
78 |
-
```
|
79 |
-
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
81 |
-
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
82 |
-
(2): Normalize()
|
83 |
-
)
|
84 |
-
```
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
-
|
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
tags:
|
|
|
4 |
- feature-extraction
|
5 |
- sentence-similarity
|
6 |
+
- setfit
|
7 |
+
- e5
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- KnutJaegersberg/wikipedia_categories
|
11 |
+
- KnutJaegersberg/wikipedia_categories_labels
|
12 |
---
|
13 |
|
14 |
+
This English model predicts the top 2 levels of the wikipedia categories (roundabout 1100 labels). It is trained on the concatenation of the headlines of the lower level categories articles in few shot setting (i.e. 8 subcategories with their headline concatenations per level 2 category).
|
15 |
+
Accuracy on test data split of the higher category level (37 labels) is 73 % and on level 2 is 60%.
|
16 |
+
Note that these numbers are just an indicator that training worked, it will differ in production settings, which is why this classifier is meant for corpus exploration.
|
17 |
+
Use the wikipedia_categories_labels dataset as key.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
|
21 |
+
from setfit import SetFitModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
Download from Hub and run inference
|
24 |
+
model = SetFitModel.from_pretrained("KnutJaegersberg/wikipedia_categories_setfit")
|
25 |
|
26 |
+
Run inference
|
27 |
+
preds = model(["Rachel Dolezal Faces Felony Charges For Welfare Fraud", "Elon Musk just got lucky", "The hype on AI is different from the hype on other tech topics"])
|