File size: 7,755 Bytes
acefbab
 
a83e213
 
5dd2115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acefbab
a83e213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd2115
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
license: apache-2.0
datasets:
- KnutJaegersberg/Auton
model-index:
- name: Walter-SOLAR-11B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.41
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.86
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 44.88
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.99
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=KnutJaegersberg/Walter-SOLAR-11B
      name: Open LLM Leaderboard
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/63732ebbbd81fae2b3aaf3fb/b3PQZKV_xZCGL8W5pjCpu.png)


Walter is an unaligned, free thinking AI assistant that has been given time to think about things.
It's trained on instruction datasets with open source licenses. 
It covers a lot of tasks, 2/3 of the samples are from large datasets like flan, but also other datasets. 
It knows a few tricks, shown by the prompting examples below: 


General Prompt Examples:
```
### Instruction:
Please answer the following question: Process:  - The bat sends out sound waves from their mouth or nose - The sound waves hit an object - Echoes are produced - The echo returns to the bat's ears - The bat hears the echo - The bat can figure out where the object is located.  suppose No bats live here happens, how will it affect STRONGER echolocation.  Which of the following is the supposed perturbation?  - directly impacting a step of the process - indirectly impacting a step of the process - not impacting any step of the process Answer: 
### Response:
indirectly impacting a step of the process
```

```
### Instruction:
You will be given a text in Russian language which contain different emotion labels from the list - ['joy', ' sadness', 'surprise', 'fear', 'anger']. You need to output the incorrect emotion label, which is irrelevant to the input text. Your answer (i) should contain only one emotion label (ii) should be unambiguous. 
### Input:
То чувство, когда идешь домой после 3-х часовой тренировки и в подъезде пахнет запеченной курицей - зачем вы меня дразните :( 
### Response:
surprise

```

CoT Prompt Example:
```
### Instruction:
In this task, you are given a sentence with a missing word that can be an object, a person, and/or an action. Fill in the blank with a plausible word. Although each sentence has many correct answers, you only have to write one answer. PersonX puts ___ on PersonY's car 
### Reasoning:
Since PersonX is putting water on PersonY's car, it could be assumed that the car is on fire. 
### Response:
water

```


Summarization Example:
```
### Instruction:
Below is a text. Write a comprehensive, concise and coherent summary. 
### Input:
Embodied bilingual language, also known as L2 embodiment, is the idea that people mentally simulate their actions, perceptions, and emotions when speaking and understanding a second language (L2) as with their first language (L1).  It is closely related to embodied cognition and embodied language processing, both of which only refer to native language thinking and speaking.  An example of embodied bilingual language would be situation in which a L1 English speaker learning Spanish as a second language hears the word rápido ("fast") in Spanish while taking notes and then proceeds to take notes more quickly. ==Overview== Embodied bilingual language refers to the role ......
### Response:
Embodied bilingual language, also known as L2 embodiment, is the idea that people mentally simulate their actions, perceptions, and emotions when speaking and understanding a second language (L2) as with their first language (L1).  It is closely related to embodied cognition and embodied language processing, both of which only refer to native language thinking and speaking.  An example of embodied bilingual language would be situation in which a L1 English speaker learning Spanish as a second language hears the word rápido ("fast") in Spanish while taking notes and then proceeds to take notes more quickly.

```


Essay Example:
```
### Instruction:
Write the original essay for the following summary: A sleeveless dress with a round neck is a great day dress and can be worn for both formal and casual occasions. It has a sweetheart neckline and is made from 100% silk. The dress has a chiffon overlay that covers up the miniskirt and still adds to the class of the dress. 
### Response:
Sleeveless Dress with a Round Neck Essay Casual wear, day dress, more formal dress The garment is a sleeveless dress with a round neck and has a sweetheart neckline. It has sheer detail on the neckline and on the back. These aspects of design make it suitable to be worn for day and evening occasions. Its great detail and chicness make it suitable for more formal events, ....
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_KnutJaegersberg__Walter-SOLAR-11B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |55.95|
|AI2 Reasoning Challenge (25-Shot)|60.41|
|HellaSwag (10-Shot)              |84.86|
|MMLU (5-Shot)                    |64.99|
|TruthfulQA (0-shot)              |44.88|
|Winogrande (5-shot)              |79.56|
|GSM8k (5-shot)                   | 0.99|