Kittipot commited on
Commit
ad07ab5
1 Parent(s): ac7938a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wisesight_sentiment
6
+ model-index:
7
+ - name: Wangchanberta-Depress-Finetuned
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Wangchanberta-Depress-Finetuned
15
+
16
+ This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the wisesight_sentiment dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.5910
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 400
44
+ - num_epochs: 4
45
+
46
+ ### Training results
47
+
48
+ | Training Loss | Epoch | Step | Validation Loss |
49
+ |:-------------:|:-----:|:-----:|:---------------:|
50
+ | 1.0114 | 0.08 | 200 | 0.9538 |
51
+ | 0.8617 | 0.15 | 400 | 0.8280 |
52
+ | 0.7882 | 0.23 | 600 | 0.7472 |
53
+ | 0.7132 | 0.3 | 800 | 0.7264 |
54
+ | 0.7226 | 0.38 | 1000 | 0.7265 |
55
+ | 0.6854 | 0.45 | 1200 | 0.6792 |
56
+ | 0.621 | 0.53 | 1400 | 0.6451 |
57
+ | 0.6093 | 0.61 | 1600 | 0.6364 |
58
+ | 0.6099 | 0.68 | 1800 | 0.6128 |
59
+ | 0.5766 | 0.76 | 2000 | 0.6388 |
60
+ | 0.6033 | 0.83 | 2200 | 0.6148 |
61
+ | 0.5966 | 0.91 | 2400 | 0.6440 |
62
+ | 0.6208 | 0.98 | 2600 | 0.5910 |
63
+ | 0.5178 | 1.06 | 2800 | 0.6340 |
64
+ | 0.4863 | 1.13 | 3000 | 0.7177 |
65
+ | 0.4852 | 1.21 | 3200 | 0.6766 |
66
+ | 0.4711 | 1.29 | 3400 | 0.6739 |
67
+ | 0.5203 | 1.36 | 3600 | 0.6429 |
68
+ | 0.5167 | 1.44 | 3800 | 0.6539 |
69
+ | 0.5053 | 1.51 | 4000 | 0.6172 |
70
+ | 0.5076 | 1.59 | 4200 | 0.6053 |
71
+ | 0.4704 | 1.66 | 4400 | 0.6474 |
72
+ | 0.4807 | 1.74 | 4600 | 0.6225 |
73
+ | 0.4792 | 1.82 | 4800 | 0.6282 |
74
+ | 0.5177 | 1.89 | 5000 | 0.6011 |
75
+ | 0.4839 | 1.97 | 5200 | 0.6231 |
76
+ | 0.4155 | 2.04 | 5400 | 0.6668 |
77
+ | 0.3923 | 2.12 | 5600 | 0.6886 |
78
+ | 0.3713 | 2.19 | 5800 | 0.6895 |
79
+ | 0.364 | 2.27 | 6000 | 0.6886 |
80
+ | 0.3774 | 2.34 | 6200 | 0.7117 |
81
+ | 0.4001 | 2.42 | 6400 | 0.7081 |
82
+ | 0.3531 | 2.5 | 6600 | 0.7465 |
83
+ | 0.3768 | 2.57 | 6800 | 0.7706 |
84
+ | 0.3324 | 2.65 | 7000 | 0.7456 |
85
+ | 0.3597 | 2.72 | 7200 | 0.7507 |
86
+ | 0.3868 | 2.8 | 7400 | 0.7542 |
87
+ | 0.4141 | 2.87 | 7600 | 0.7223 |
88
+ | 0.3701 | 2.95 | 7800 | 0.7374 |
89
+ | 0.3175 | 3.03 | 8000 | 0.7615 |
90
+ | 0.2951 | 3.1 | 8200 | 0.7880 |
91
+ | 0.2885 | 3.18 | 8400 | 0.8158 |
92
+ | 0.2913 | 3.25 | 8600 | 0.8565 |
93
+ | 0.2815 | 3.33 | 8800 | 0.8649 |
94
+ | 0.2748 | 3.4 | 9000 | 0.8783 |
95
+ | 0.2776 | 3.48 | 9200 | 0.8851 |
96
+ | 0.2982 | 3.56 | 9400 | 0.8922 |
97
+ | 0.2939 | 3.63 | 9600 | 0.8796 |
98
+ | 0.2712 | 3.71 | 9800 | 0.8873 |
99
+ | 0.2918 | 3.78 | 10000 | 0.8973 |
100
+ | 0.3144 | 3.86 | 10200 | 0.8978 |
101
+ | 0.2988 | 3.93 | 10400 | 0.8951 |
102
+
103
+
104
+ ### Framework versions
105
+
106
+ - Transformers 4.11.2
107
+ - Pytorch 1.11.0+cu113
108
+ - Datasets 2.1.0
109
+ - Tokenizers 0.10.3