update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- wisesight_sentiment
|
6 |
+
model-index:
|
7 |
+
- name: Wangchanberta-Depress-Finetuned
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# Wangchanberta-Depress-Finetuned
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the wisesight_sentiment dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.5910
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 2e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- lr_scheduler_warmup_steps: 400
|
44 |
+
- num_epochs: 4
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 1.0114 | 0.08 | 200 | 0.9538 |
|
51 |
+
| 0.8617 | 0.15 | 400 | 0.8280 |
|
52 |
+
| 0.7882 | 0.23 | 600 | 0.7472 |
|
53 |
+
| 0.7132 | 0.3 | 800 | 0.7264 |
|
54 |
+
| 0.7226 | 0.38 | 1000 | 0.7265 |
|
55 |
+
| 0.6854 | 0.45 | 1200 | 0.6792 |
|
56 |
+
| 0.621 | 0.53 | 1400 | 0.6451 |
|
57 |
+
| 0.6093 | 0.61 | 1600 | 0.6364 |
|
58 |
+
| 0.6099 | 0.68 | 1800 | 0.6128 |
|
59 |
+
| 0.5766 | 0.76 | 2000 | 0.6388 |
|
60 |
+
| 0.6033 | 0.83 | 2200 | 0.6148 |
|
61 |
+
| 0.5966 | 0.91 | 2400 | 0.6440 |
|
62 |
+
| 0.6208 | 0.98 | 2600 | 0.5910 |
|
63 |
+
| 0.5178 | 1.06 | 2800 | 0.6340 |
|
64 |
+
| 0.4863 | 1.13 | 3000 | 0.7177 |
|
65 |
+
| 0.4852 | 1.21 | 3200 | 0.6766 |
|
66 |
+
| 0.4711 | 1.29 | 3400 | 0.6739 |
|
67 |
+
| 0.5203 | 1.36 | 3600 | 0.6429 |
|
68 |
+
| 0.5167 | 1.44 | 3800 | 0.6539 |
|
69 |
+
| 0.5053 | 1.51 | 4000 | 0.6172 |
|
70 |
+
| 0.5076 | 1.59 | 4200 | 0.6053 |
|
71 |
+
| 0.4704 | 1.66 | 4400 | 0.6474 |
|
72 |
+
| 0.4807 | 1.74 | 4600 | 0.6225 |
|
73 |
+
| 0.4792 | 1.82 | 4800 | 0.6282 |
|
74 |
+
| 0.5177 | 1.89 | 5000 | 0.6011 |
|
75 |
+
| 0.4839 | 1.97 | 5200 | 0.6231 |
|
76 |
+
| 0.4155 | 2.04 | 5400 | 0.6668 |
|
77 |
+
| 0.3923 | 2.12 | 5600 | 0.6886 |
|
78 |
+
| 0.3713 | 2.19 | 5800 | 0.6895 |
|
79 |
+
| 0.364 | 2.27 | 6000 | 0.6886 |
|
80 |
+
| 0.3774 | 2.34 | 6200 | 0.7117 |
|
81 |
+
| 0.4001 | 2.42 | 6400 | 0.7081 |
|
82 |
+
| 0.3531 | 2.5 | 6600 | 0.7465 |
|
83 |
+
| 0.3768 | 2.57 | 6800 | 0.7706 |
|
84 |
+
| 0.3324 | 2.65 | 7000 | 0.7456 |
|
85 |
+
| 0.3597 | 2.72 | 7200 | 0.7507 |
|
86 |
+
| 0.3868 | 2.8 | 7400 | 0.7542 |
|
87 |
+
| 0.4141 | 2.87 | 7600 | 0.7223 |
|
88 |
+
| 0.3701 | 2.95 | 7800 | 0.7374 |
|
89 |
+
| 0.3175 | 3.03 | 8000 | 0.7615 |
|
90 |
+
| 0.2951 | 3.1 | 8200 | 0.7880 |
|
91 |
+
| 0.2885 | 3.18 | 8400 | 0.8158 |
|
92 |
+
| 0.2913 | 3.25 | 8600 | 0.8565 |
|
93 |
+
| 0.2815 | 3.33 | 8800 | 0.8649 |
|
94 |
+
| 0.2748 | 3.4 | 9000 | 0.8783 |
|
95 |
+
| 0.2776 | 3.48 | 9200 | 0.8851 |
|
96 |
+
| 0.2982 | 3.56 | 9400 | 0.8922 |
|
97 |
+
| 0.2939 | 3.63 | 9600 | 0.8796 |
|
98 |
+
| 0.2712 | 3.71 | 9800 | 0.8873 |
|
99 |
+
| 0.2918 | 3.78 | 10000 | 0.8973 |
|
100 |
+
| 0.3144 | 3.86 | 10200 | 0.8978 |
|
101 |
+
| 0.2988 | 3.93 | 10400 | 0.8951 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.11.2
|
107 |
+
- Pytorch 1.11.0+cu113
|
108 |
+
- Datasets 2.1.0
|
109 |
+
- Tokenizers 0.10.3
|