--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6411 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 13 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8965 | 1.0 | 113 | 1.8976 | 0.28 | | 1.3295 | 2.0 | 226 | 1.4744 | 0.52 | | 1.159 | 3.0 | 339 | 1.0918 | 0.66 | | 0.5861 | 4.0 | 452 | 0.9779 | 0.74 | | 1.0464 | 5.0 | 565 | 0.9167 | 0.73 | | 0.8294 | 6.0 | 678 | 0.8404 | 0.75 | | 0.462 | 7.0 | 791 | 0.8323 | 0.78 | | 0.1366 | 8.0 | 904 | 0.7485 | 0.8 | | 0.179 | 9.0 | 1017 | 0.6523 | 0.87 | | 0.0361 | 10.0 | 1130 | 0.6313 | 0.87 | | 0.2355 | 11.0 | 1243 | 0.6609 | 0.88 | | 0.0543 | 12.0 | 1356 | 0.6559 | 0.88 | | 0.0201 | 13.0 | 1469 | 0.6411 | 0.88 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0