Kedar84 commited on
Commit
20dde59
1 Parent(s): 87cb1ba

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/workspace/final-model/mini-internvl-chat-4b-v1_5/v2-20240705-133804/checkpoint-250-merged",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 3072,
16
+ "llm_config": {
17
+ "_name_or_path": "pretrained/Phi-3-mini-128k-instruct/",
18
+ "add_cross_attention": false,
19
+ "architectures": [
20
+ "Phi3ForCausalLM"
21
+ ],
22
+ "attention_dropout": 0.0,
23
+ "auto_map": {
24
+ "AutoConfig": "configuration_phi3.Phi3Config",
25
+ "AutoModel": "modeling_phi3.Phi3ForCausalLM",
26
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
27
+ },
28
+ "bad_words_ids": null,
29
+ "begin_suppress_tokens": null,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "embd_pdrop": 0.0,
38
+ "encoder_no_repeat_ngram_size": 0,
39
+ "eos_token_id": 32000,
40
+ "exponential_decay_length_penalty": null,
41
+ "finetuning_task": null,
42
+ "forced_bos_token_id": null,
43
+ "forced_eos_token_id": null,
44
+ "hidden_act": "silu",
45
+ "hidden_size": 3072,
46
+ "id2label": {
47
+ "0": "LABEL_0",
48
+ "1": "LABEL_1"
49
+ },
50
+ "initializer_range": 0.02,
51
+ "intermediate_size": 8192,
52
+ "is_decoder": false,
53
+ "is_encoder_decoder": false,
54
+ "label2id": {
55
+ "LABEL_0": 0,
56
+ "LABEL_1": 1
57
+ },
58
+ "length_penalty": 1.0,
59
+ "max_length": 20,
60
+ "max_position_embeddings": 131072,
61
+ "min_length": 0,
62
+ "model_type": "phi3",
63
+ "no_repeat_ngram_size": 0,
64
+ "num_attention_heads": 32,
65
+ "num_beam_groups": 1,
66
+ "num_beams": 1,
67
+ "num_hidden_layers": 32,
68
+ "num_key_value_heads": 32,
69
+ "num_return_sequences": 1,
70
+ "original_max_position_embeddings": 4096,
71
+ "output_attentions": false,
72
+ "output_hidden_states": false,
73
+ "output_scores": false,
74
+ "pad_token_id": 32000,
75
+ "prefix": null,
76
+ "problem_type": null,
77
+ "pruned_heads": {},
78
+ "remove_invalid_values": false,
79
+ "repetition_penalty": 1.0,
80
+ "resid_pdrop": 0.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": {
85
+ "long_factor": [
86
+ 1.0299999713897705,
87
+ 1.0499999523162842,
88
+ 1.0499999523162842,
89
+ 1.0799999237060547,
90
+ 1.2299998998641968,
91
+ 1.2299998998641968,
92
+ 1.2999999523162842,
93
+ 1.4499999284744263,
94
+ 1.5999999046325684,
95
+ 1.6499998569488525,
96
+ 1.8999998569488525,
97
+ 2.859999895095825,
98
+ 3.68999981880188,
99
+ 5.419999599456787,
100
+ 5.489999771118164,
101
+ 5.489999771118164,
102
+ 9.09000015258789,
103
+ 11.579999923706055,
104
+ 15.65999984741211,
105
+ 15.769999504089355,
106
+ 15.789999961853027,
107
+ 18.360000610351562,
108
+ 21.989999771118164,
109
+ 23.079999923706055,
110
+ 30.009998321533203,
111
+ 32.35000228881836,
112
+ 32.590003967285156,
113
+ 35.56000518798828,
114
+ 39.95000457763672,
115
+ 53.840003967285156,
116
+ 56.20000457763672,
117
+ 57.95000457763672,
118
+ 59.29000473022461,
119
+ 59.77000427246094,
120
+ 59.920005798339844,
121
+ 61.190006256103516,
122
+ 61.96000671386719,
123
+ 62.50000762939453,
124
+ 63.3700065612793,
125
+ 63.48000717163086,
126
+ 63.48000717163086,
127
+ 63.66000747680664,
128
+ 63.850006103515625,
129
+ 64.08000946044922,
130
+ 64.760009765625,
131
+ 64.80001068115234,
132
+ 64.81001281738281,
133
+ 64.81001281738281
134
+ ],
135
+ "short_factor": [
136
+ 1.05,
137
+ 1.05,
138
+ 1.05,
139
+ 1.1,
140
+ 1.1,
141
+ 1.1500000000000001,
142
+ 1.2000000000000002,
143
+ 1.2500000000000002,
144
+ 1.3000000000000003,
145
+ 1.3500000000000003,
146
+ 1.5000000000000004,
147
+ 2.000000000000001,
148
+ 2.000000000000001,
149
+ 2.000000000000001,
150
+ 2.000000000000001,
151
+ 2.000000000000001,
152
+ 2.000000000000001,
153
+ 2.000000000000001,
154
+ 2.000000000000001,
155
+ 2.000000000000001,
156
+ 2.000000000000001,
157
+ 2.000000000000001,
158
+ 2.000000000000001,
159
+ 2.000000000000001,
160
+ 2.000000000000001,
161
+ 2.000000000000001,
162
+ 2.000000000000001,
163
+ 2.000000000000001,
164
+ 2.000000000000001,
165
+ 2.000000000000001,
166
+ 2.000000000000001,
167
+ 2.000000000000001,
168
+ 2.0500000000000007,
169
+ 2.0500000000000007,
170
+ 2.0500000000000007,
171
+ 2.1000000000000005,
172
+ 2.1000000000000005,
173
+ 2.1000000000000005,
174
+ 2.1500000000000004,
175
+ 2.1500000000000004,
176
+ 2.3499999999999996,
177
+ 2.549999999999999,
178
+ 2.5999999999999988,
179
+ 2.5999999999999988,
180
+ 2.7499999999999982,
181
+ 2.849999999999998,
182
+ 2.849999999999998,
183
+ 2.9499999999999975
184
+ ],
185
+ "type": "su"
186
+ },
187
+ "rope_theta": 10000.0,
188
+ "sep_token_id": null,
189
+ "sliding_window": 262144,
190
+ "suppress_tokens": null,
191
+ "task_specific_params": null,
192
+ "temperature": 1.0,
193
+ "tf_legacy_loss": false,
194
+ "tie_encoder_decoder": false,
195
+ "tie_word_embeddings": false,
196
+ "tokenizer_class": null,
197
+ "top_k": 50,
198
+ "top_p": 1.0,
199
+ "torch_dtype": "bfloat16",
200
+ "torchscript": false,
201
+ "transformers_version": "4.42.3",
202
+ "typical_p": 1.0,
203
+ "use_bfloat16": false,
204
+ "use_cache": true,
205
+ "vocab_size": 32020
206
+ },
207
+ "max_dynamic_patch": 12,
208
+ "max_position_embeddings": 131072,
209
+ "min_dynamic_patch": 1,
210
+ "model_type": "internvl_chat",
211
+ "pad2square": false,
212
+ "ps_version": "v2",
213
+ "select_layer": -1,
214
+ "template": "phi3-chat",
215
+ "torch_dtype": "bfloat16",
216
+ "transformers_version": null,
217
+ "use_backbone_lora": 0,
218
+ "use_llm_lora": 0,
219
+ "use_thumbnail": true,
220
+ "vision_config": {
221
+ "_name_or_path": "OpenGVLab/InternViT-300M-448px",
222
+ "add_cross_attention": false,
223
+ "architectures": [
224
+ "InternVisionModel"
225
+ ],
226
+ "attention_dropout": 0.0,
227
+ "auto_map": {
228
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
229
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
230
+ },
231
+ "bad_words_ids": null,
232
+ "begin_suppress_tokens": null,
233
+ "bos_token_id": null,
234
+ "chunk_size_feed_forward": 0,
235
+ "cross_attention_hidden_size": null,
236
+ "decoder_start_token_id": null,
237
+ "diversity_penalty": 0.0,
238
+ "do_sample": false,
239
+ "drop_path_rate": 0.1,
240
+ "dropout": 0.0,
241
+ "early_stopping": false,
242
+ "encoder_no_repeat_ngram_size": 0,
243
+ "eos_token_id": null,
244
+ "exponential_decay_length_penalty": null,
245
+ "finetuning_task": null,
246
+ "forced_bos_token_id": null,
247
+ "forced_eos_token_id": null,
248
+ "hidden_act": "gelu",
249
+ "hidden_size": 1024,
250
+ "id2label": {
251
+ "0": "LABEL_0",
252
+ "1": "LABEL_1"
253
+ },
254
+ "image_size": 448,
255
+ "initializer_factor": 1.0,
256
+ "initializer_range": 0.02,
257
+ "intermediate_size": 4096,
258
+ "is_decoder": false,
259
+ "is_encoder_decoder": false,
260
+ "label2id": {
261
+ "LABEL_0": 0,
262
+ "LABEL_1": 1
263
+ },
264
+ "layer_norm_eps": 1e-06,
265
+ "length_penalty": 1.0,
266
+ "max_length": 20,
267
+ "min_length": 0,
268
+ "model_type": "intern_vit_6b",
269
+ "no_repeat_ngram_size": 0,
270
+ "norm_type": "layer_norm",
271
+ "num_attention_heads": 16,
272
+ "num_beam_groups": 1,
273
+ "num_beams": 1,
274
+ "num_channels": 3,
275
+ "num_hidden_layers": 24,
276
+ "num_return_sequences": 1,
277
+ "output_attentions": false,
278
+ "output_hidden_states": false,
279
+ "output_scores": false,
280
+ "pad_token_id": null,
281
+ "patch_size": 14,
282
+ "prefix": null,
283
+ "problem_type": null,
284
+ "pruned_heads": {},
285
+ "qk_normalization": false,
286
+ "qkv_bias": true,
287
+ "remove_invalid_values": false,
288
+ "repetition_penalty": 1.0,
289
+ "return_dict": true,
290
+ "return_dict_in_generate": false,
291
+ "sep_token_id": null,
292
+ "suppress_tokens": null,
293
+ "task_specific_params": null,
294
+ "temperature": 1.0,
295
+ "tf_legacy_loss": false,
296
+ "tie_encoder_decoder": false,
297
+ "tie_word_embeddings": true,
298
+ "tokenizer_class": null,
299
+ "top_k": 50,
300
+ "top_p": 1.0,
301
+ "torch_dtype": "bfloat16",
302
+ "torchscript": false,
303
+ "transformers_version": "4.42.3",
304
+ "typical_p": 1.0,
305
+ "use_bfloat16": true,
306
+ "use_flash_attn": false
307
+ }
308
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_phi3 import Phi3Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ pad2square=False,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
52
+ self.llm_config = LlamaConfig(**llm_config)
53
+ elif llm_config['architectures'][0] == 'Phi3ForCausalLM':
54
+ self.llm_config = Phi3Config(**llm_config)
55
+ else:
56
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
57
+ self.use_backbone_lora = use_backbone_lora
58
+ self.use_llm_lora = use_llm_lora
59
+ self.pad2square = pad2square
60
+ self.select_layer = select_layer
61
+ self.force_image_size = force_image_size
62
+ self.downsample_ratio = downsample_ratio
63
+ self.template = template
64
+ self.dynamic_image_size = dynamic_image_size
65
+ self.use_thumbnail = use_thumbnail
66
+ self.ps_version = ps_version # pixel shuffle version
67
+ self.min_dynamic_patch = min_dynamic_patch
68
+ self.max_dynamic_patch = max_dynamic_patch
69
+
70
+ logger.info(f'vision_select_layer: {self.select_layer}')
71
+ logger.info(f'ps_version: {self.ps_version}')
72
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
73
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
74
+
75
+ def to_dict(self):
76
+ """
77
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
78
+
79
+ Returns:
80
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
81
+ """
82
+ output = copy.deepcopy(self.__dict__)
83
+ output['vision_config'] = self.vision_config.to_dict()
84
+ output['llm_config'] = self.llm_config.to_dict()
85
+ output['model_type'] = self.__class__.model_type
86
+ output['use_backbone_lora'] = self.use_backbone_lora
87
+ output['use_llm_lora'] = self.use_llm_lora
88
+ output['pad2square'] = self.pad2square
89
+ output['select_layer'] = self.select_layer
90
+ output['force_image_size'] = self.force_image_size
91
+ output['downsample_ratio'] = self.downsample_ratio
92
+ output['template'] = self.template
93
+ output['dynamic_image_size'] = self.dynamic_image_size
94
+ output['use_thumbnail'] = self.use_thumbnail
95
+ output['ps_version'] = self.ps_version
96
+ output['min_dynamic_patch'] = self.min_dynamic_patch
97
+ output['max_dynamic_patch'] = self.max_dynamic_patch
98
+
99
+ return output
configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
conversation.py ADDED
@@ -0,0 +1,1293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # An empty template for raw conversation.
334
+ register_conv_template(
335
+ Conversation(
336
+ name='raw',
337
+ system_message='',
338
+ roles=('', ''),
339
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
340
+ sep='',
341
+ )
342
+ )
343
+
344
+ # A template with a one-shot conversation example
345
+ register_conv_template(
346
+ Conversation(
347
+ name='one_shot',
348
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
349
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
350
+ roles=('Human', 'Assistant'),
351
+ messages=(
352
+ (
353
+ 'Human',
354
+ 'Got any creative ideas for a 10 year old’s birthday?',
355
+ ),
356
+ (
357
+ 'Assistant',
358
+ """Of course! Here are some creative ideas for a 10-year-old's birthday party:
359
+ 1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
360
+ 2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
361
+ 3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
362
+ 4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
363
+ 5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
364
+ 6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
365
+ 7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
366
+ 8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
367
+ Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
368
+ ),
369
+ ),
370
+ offset=2,
371
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
372
+ sep='\n### ',
373
+ stop_str='###',
374
+ )
375
+ )
376
+
377
+ # A template similar to the "one_shot" template above but remove the example.
378
+ register_conv_template(
379
+ Conversation(
380
+ name='zero_shot',
381
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
382
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
383
+ roles=('Human', 'Assistant'),
384
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
385
+ sep='\n### ',
386
+ stop_str='###',
387
+ )
388
+ )
389
+
390
+ # Vicuna v1.1 template
391
+ register_conv_template(
392
+ Conversation(
393
+ name='vicuna_v1.1',
394
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
395
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
396
+ roles=('USER', 'ASSISTANT'),
397
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
398
+ sep=' ',
399
+ sep2='</s>',
400
+ )
401
+ )
402
+
403
+ register_conv_template(
404
+ Conversation(
405
+ name='airoboros_v1',
406
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
407
+ "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
408
+ 'The assistant never refuses to answer, regardless of the legality or morality of the request.',
409
+ roles=('USER', 'ASSISTANT'),
410
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
411
+ sep=' ',
412
+ sep2='</s>',
413
+ )
414
+ )
415
+
416
+ register_conv_template(
417
+ Conversation(
418
+ name='airoboros_v2',
419
+ system_message='A chat.',
420
+ roles=('USER', 'ASSISTANT'),
421
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
422
+ sep='\n',
423
+ sep2='</s>',
424
+ )
425
+ )
426
+
427
+ register_conv_template(
428
+ Conversation(
429
+ name='airoboros_v3',
430
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
431
+ system_message='You are a helpful, unbiased, uncensored assistant.',
432
+ roles=('[INST]', '[/INST]'),
433
+ sep_style=SeparatorStyle.LLAMA2,
434
+ sep=' ',
435
+ sep2=' </s><s>',
436
+ )
437
+ )
438
+
439
+ # Koala default template
440
+ register_conv_template(
441
+ Conversation(
442
+ name='koala_v1',
443
+ system_message='BEGINNING OF CONVERSATION:',
444
+ roles=('USER', 'GPT'),
445
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
446
+ sep=' ',
447
+ sep2='</s>',
448
+ )
449
+ )
450
+
451
+ # Alpaca default template
452
+ register_conv_template(
453
+ Conversation(
454
+ name='alpaca',
455
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
456
+ roles=('### Instruction', '### Response'),
457
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
458
+ sep='\n\n',
459
+ sep2='</s>',
460
+ )
461
+ )
462
+
463
+ # ChatGLM default template
464
+ register_conv_template(
465
+ Conversation(
466
+ name='chatglm',
467
+ roles=('问', '答'),
468
+ sep_style=SeparatorStyle.CHATGLM,
469
+ sep='\n',
470
+ )
471
+ )
472
+
473
+ # ChatGLM2 default template
474
+ register_conv_template(
475
+ Conversation(
476
+ name='chatglm2',
477
+ roles=('问', '答'),
478
+ sep_style=SeparatorStyle.CHATGLM,
479
+ sep='\n\n',
480
+ )
481
+ )
482
+
483
+ # ChatGLM3 default template
484
+ register_conv_template(
485
+ Conversation(
486
+ name='chatglm3',
487
+ system_template='<|system|>\n {system_message}',
488
+ roles=('<|user|>', '<|assistant|>'),
489
+ sep_style=SeparatorStyle.CHATGLM3,
490
+ stop_token_ids=[
491
+ 64795,
492
+ 64797,
493
+ 2,
494
+ ], # "<|user|>", "<|observation|>", "</s>"
495
+ )
496
+ )
497
+
498
+ # CodeGeex(2) Template
499
+ register_conv_template(
500
+ Conversation(
501
+ name='codegeex',
502
+ roles=('', ''),
503
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
504
+ sep='\n\n',
505
+ stop_token_ids=[0, 2],
506
+ )
507
+ )
508
+
509
+ # Dolly V2 default template
510
+ register_conv_template(
511
+ Conversation(
512
+ name='dolly_v2',
513
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n',
514
+ roles=('### Instruction', '### Response'),
515
+ sep_style=SeparatorStyle.DOLLY,
516
+ sep='\n\n',
517
+ sep2='### End',
518
+ )
519
+ )
520
+
521
+ # OpenAssistant Pythia default template
522
+ register_conv_template(
523
+ Conversation(
524
+ name='oasst_pythia',
525
+ roles=('<|prompter|>', '<|assistant|>'),
526
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
527
+ sep='<|endoftext|>',
528
+ )
529
+ )
530
+
531
+ # OpenAssistant default template
532
+ register_conv_template(
533
+ Conversation(
534
+ name='oasst_llama',
535
+ roles=('<|prompter|>', '<|assistant|>'),
536
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
537
+ sep='</s>',
538
+ )
539
+ )
540
+
541
+ # OpenChat 3.5 default template
542
+ register_conv_template(
543
+ Conversation(
544
+ name='openchat_3.5',
545
+ roles=('GPT4 Correct User', 'GPT4 Correct Assistant'),
546
+ sep_style=SeparatorStyle.FALCON_CHAT,
547
+ sep='<|end_of_turn|>',
548
+ )
549
+ )
550
+
551
+ # Tulu default template
552
+ register_conv_template(
553
+ Conversation(
554
+ name='tulu',
555
+ roles=('<|user|>', '<|assistant|>'),
556
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
557
+ sep='\n',
558
+ )
559
+ )
560
+
561
+ # StableLM Alpha default template
562
+ register_conv_template(
563
+ Conversation(
564
+ name='stablelm',
565
+ system_template='<|SYSTEM|>{system_message}',
566
+ system_message="""# StableLM Tuned (Alpha version)
567
+ - StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
568
+ - StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
569
+ - StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
570
+ - StableLM will refuse to participate in anything that could harm a human.
571
+ """,
572
+ roles=('<|USER|>', '<|ASSISTANT|>'),
573
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
574
+ sep='',
575
+ stop_token_ids=[50278, 50279, 50277, 1, 0],
576
+ )
577
+ )
578
+
579
+ # Baize default template
580
+ register_conv_template(
581
+ Conversation(
582
+ name='baize',
583
+ system_message='The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n',
584
+ roles=('[|Human|]', '[|AI|]'),
585
+ messages=(
586
+ ('[|Human|]', 'Hello!'),
587
+ ('[|AI|]', 'Hi!'),
588
+ ),
589
+ offset=2,
590
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
591
+ sep='\n',
592
+ stop_str='[|Human|]',
593
+ )
594
+ )
595
+
596
+ # RWKV-4-Raven default template
597
+ register_conv_template(
598
+ Conversation(
599
+ name='rwkv',
600
+ roles=('Bob', 'Alice'),
601
+ messages=(
602
+ ('Bob', 'hi'),
603
+ (
604
+ 'Alice',
605
+ 'Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.',
606
+ ),
607
+ ),
608
+ offset=2,
609
+ sep_style=SeparatorStyle.RWKV,
610
+ sep='',
611
+ stop_str='\n\n',
612
+ )
613
+ )
614
+
615
+ # Buddy default template
616
+ register_conv_template(
617
+ Conversation(
618
+ name='openbuddy',
619
+ system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
620
+ Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
621
+ Buddy cannot access the Internet.
622
+ Buddy can fluently speak the user's language (e.g. English, Chinese).
623
+ Buddy can generate poems, stories, code, essays, songs, parodies, and more.
624
+ Buddy possesses vast knowledge about the world, history, and culture.
625
+ Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
626
+ Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.
627
+
628
+ User: Hi.
629
+ Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
630
+ roles=('User', 'Assistant'),
631
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
632
+ sep='\n',
633
+ )
634
+ )
635
+
636
+ # Phoenix default template
637
+ register_conv_template(
638
+ Conversation(
639
+ name='phoenix',
640
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
641
+ roles=('Human', 'Assistant'),
642
+ sep_style=SeparatorStyle.PHOENIX,
643
+ sep='</s>',
644
+ )
645
+ )
646
+
647
+ # ReaLM default template
648
+ register_conv_template(
649
+ Conversation(
650
+ name='ReaLM-7b-v1',
651
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
652
+ roles=('Human', 'Assistant'),
653
+ sep_style=SeparatorStyle.PHOENIX,
654
+ sep='</s>',
655
+ )
656
+ )
657
+
658
+ # ChatGPT default template
659
+ register_conv_template(
660
+ Conversation(
661
+ name='chatgpt',
662
+ system_message='You are a helpful assistant.',
663
+ roles=('user', 'assistant'),
664
+ sep_style=None,
665
+ sep=None,
666
+ )
667
+ )
668
+
669
+ # Claude default template
670
+ register_conv_template(
671
+ Conversation(
672
+ name='claude',
673
+ roles=('Human', 'Assistant'),
674
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
675
+ sep='\n\n',
676
+ )
677
+ )
678
+
679
+ # MPT default template
680
+ register_conv_template(
681
+ Conversation(
682
+ name='mpt-7b-chat',
683
+ system_template="""<|im_start|>system
684
+ {system_message}""",
685
+ system_message="""- You are a helpful assistant chatbot trained by MosaicML.
686
+ - You answer questions.
687
+ - You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
688
+ - You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
689
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
690
+ sep_style=SeparatorStyle.CHATML,
691
+ sep='<|im_end|>',
692
+ stop_token_ids=[50278, 0],
693
+ )
694
+ )
695
+
696
+ # MPT-30b-chat default template
697
+ register_conv_template(
698
+ Conversation(
699
+ name='mpt-30b-chat',
700
+ system_template="""<|im_start|>system
701
+ {system_message}""",
702
+ system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
703
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
704
+ sep_style=SeparatorStyle.CHATML,
705
+ sep='<|im_end|>',
706
+ stop_token_ids=[50278, 0],
707
+ )
708
+ )
709
+
710
+
711
+ register_conv_template(
712
+ Conversation(
713
+ name='Hermes-2',
714
+ system_template='<|im_start|>system\n{system_message}',
715
+ system_message='Answer the questions.',
716
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
717
+ sep_style=SeparatorStyle.MPT,
718
+ sep='<|im_end|>',
719
+ stop_token_ids=[
720
+ 2,
721
+ 6,
722
+ 7,
723
+ 8,
724
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
725
+ stop_str='<|endoftext|>',
726
+ )
727
+ )
728
+
729
+
730
+ register_conv_template(
731
+ Conversation(
732
+ name='internlm2-chat',
733
+ system_template='<|im_start|>system\n{system_message}',
734
+ system_message='You are an AI assistant whose name is InternLM (书生·浦语).',
735
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
736
+ sep_style=SeparatorStyle.MPT,
737
+ sep='<|im_end|>',
738
+ stop_token_ids=[
739
+ 2,
740
+ 92543,
741
+ 92542
742
+ ]
743
+ )
744
+ )
745
+
746
+
747
+ register_conv_template(
748
+ Conversation(
749
+ name='llama3-chat',
750
+ system_template='<|system|>\n{system_message}',
751
+ system_message='You are an AI assistant whose name is InternVL.',
752
+ roles=('<|user|>\n', '<|assistant|>\n'),
753
+ sep_style=SeparatorStyle.MPT,
754
+ sep='<|end|>',
755
+ stop_token_ids=[
756
+ 128259,
757
+ 128001
758
+ ]
759
+ )
760
+ )
761
+
762
+
763
+ register_conv_template(
764
+ Conversation(
765
+ name='phi3-chat',
766
+ system_template='<|system|>\n{system_message}',
767
+ system_message='You are an AI assistant whose name is Phi-3.',
768
+ roles=('<|user|>\n', '<|assistant|>\n'),
769
+ sep_style=SeparatorStyle.MPT,
770
+ sep='<|end|>',
771
+ stop_token_ids=[
772
+ 2,
773
+ 32000,
774
+ 32007
775
+ ]
776
+ )
777
+ )
778
+
779
+ # Lemur-70b-chat default template
780
+ # reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
781
+ register_conv_template(
782
+ Conversation(
783
+ name='lemur-70b-chat',
784
+ system_template="""<|im_start|>system
785
+ {system_message}""",
786
+ system_message="""You are a helpful, respectful, and honest assistant.""",
787
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
788
+ sep_style=SeparatorStyle.CHATML,
789
+ sep='<|im_end|>',
790
+ stop_token_ids=[32002, 0],
791
+ )
792
+ )
793
+
794
+ # MPT-30b-instruct default template
795
+ # reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
796
+ register_conv_template(
797
+ Conversation(
798
+ name='mpt-30b-instruct',
799
+ system_template='{system_message}',
800
+ system_message='Below is an instruction that describes a task. Write a response that appropriately completes the request.',
801
+ roles=('### Instruction', '### Response'),
802
+ sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
803
+ sep='\n\n',
804
+ stop_token_ids=[50278, 0],
805
+ )
806
+ )
807
+
808
+ # Bard default template
809
+ # Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
810
+ # https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
811
+ register_conv_template(
812
+ Conversation(
813
+ name='bard',
814
+ roles=('0', '1'),
815
+ sep_style=None,
816
+ sep=None,
817
+ )
818
+ )
819
+
820
+ # BiLLa default template
821
+ register_conv_template(
822
+ Conversation(
823
+ name='billa',
824
+ roles=('Human', 'Assistant'),
825
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
826
+ sep='\n',
827
+ stop_str='Human:',
828
+ )
829
+ )
830
+
831
+ # RedPajama INCITE default template
832
+ register_conv_template(
833
+ Conversation(
834
+ name='redpajama-incite',
835
+ roles=('<human>', '<bot>'),
836
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
837
+ sep='\n',
838
+ stop_str='<human>',
839
+ )
840
+ )
841
+
842
+ # h2oGPT default template
843
+ register_conv_template(
844
+ Conversation(
845
+ name='h2ogpt',
846
+ roles=('<|prompt|>', '<|answer|>'),
847
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
848
+ sep='</s>',
849
+ )
850
+ )
851
+
852
+ # Robin default template
853
+ register_conv_template(
854
+ Conversation(
855
+ name='Robin',
856
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
857
+ roles=('###Human', '###Assistant'),
858
+ sep_style=SeparatorStyle.ROBIN,
859
+ sep='\n',
860
+ stop_token_ids=[2, 396],
861
+ stop_str='###',
862
+ )
863
+ )
864
+
865
+ # Snoozy default template
866
+ # Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
867
+ register_conv_template(
868
+ Conversation(
869
+ name='snoozy',
870
+ system_template='### Instruction:\n{system_message}',
871
+ system_message='The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.',
872
+ roles=('### Prompt', '### Response'),
873
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
874
+ sep='\n',
875
+ stop_str='###',
876
+ )
877
+ )
878
+
879
+ # manticore default template
880
+ register_conv_template(
881
+ Conversation(
882
+ name='manticore',
883
+ roles=('USER', 'ASSISTANT'),
884
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
885
+ sep='\n',
886
+ sep2='</s>',
887
+ )
888
+ )
889
+
890
+ # Falcon default template
891
+ register_conv_template(
892
+ Conversation(
893
+ name='falcon',
894
+ roles=('User', 'Assistant'),
895
+ messages=[],
896
+ sep_style=SeparatorStyle.RWKV,
897
+ sep='\n',
898
+ sep2='<|endoftext|>',
899
+ stop_str='\nUser', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
900
+ stop_token_ids=[
901
+ 0,
902
+ 1,
903
+ 2,
904
+ 3,
905
+ 4,
906
+ 5,
907
+ 6,
908
+ 7,
909
+ 8,
910
+ 9,
911
+ 10,
912
+ 11,
913
+ ], # it better only put special tokens here, because tokenizer only remove special tokens
914
+ )
915
+ )
916
+
917
+ # ChangGPT default template
918
+ register_conv_template(
919
+ Conversation(
920
+ name='polyglot_changgpt',
921
+ roles=('B', 'A'),
922
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
923
+ sep='\n',
924
+ )
925
+ )
926
+
927
+ # tigerbot template
928
+ register_conv_template(
929
+ Conversation(
930
+ name='tigerbot',
931
+ system_message='A chat between a curious user and an artificial intelligence assistant. '
932
+ "The assistant gives helpful, detailed, and polite answers to the user's questions.",
933
+ roles=('### Instruction', '### Response'),
934
+ sep_style=SeparatorStyle.ROBIN,
935
+ sep='\n\n',
936
+ stop_str='###',
937
+ )
938
+ )
939
+
940
+ # ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
941
+ register_conv_template(
942
+ Conversation(
943
+ name='xgen',
944
+ system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
945
+ roles=('### Human', '### Assistant'),
946
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
947
+ sep='\n',
948
+ stop_token_ids=[50256],
949
+ )
950
+ )
951
+
952
+ # Internlm-chat template
953
+ register_conv_template(
954
+ Conversation(
955
+ name='internlm-chat',
956
+ system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
957
+ roles=('<|User|>', '<|Bot|>'),
958
+ sep_style=SeparatorStyle.CHATINTERN,
959
+ sep='<eoh>',
960
+ sep2='<eoa>',
961
+ stop_token_ids=[1, 103028],
962
+ stop_str='<|User|>',
963
+ )
964
+ )
965
+
966
+ # StarChat template
967
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
968
+ register_conv_template(
969
+ Conversation(
970
+ name='starchat',
971
+ system_template='<system>\n{system_message}',
972
+ roles=('<|user|>', '<|assistant|>'),
973
+ sep_style=SeparatorStyle.CHATML,
974
+ sep='<|end|>',
975
+ stop_token_ids=[0, 49155],
976
+ stop_str='<|end|>',
977
+ )
978
+ )
979
+
980
+ # Baichuan-13B-Chat template
981
+ register_conv_template(
982
+ # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
983
+ # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
984
+ # https://github.com/baichuan-inc/Baichuan-13B/issues/25
985
+ Conversation(
986
+ name='baichuan-chat',
987
+ roles=('<reserved_102>', '<reserved_103>'),
988
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
989
+ sep='',
990
+ stop_token_ids=[],
991
+ )
992
+ )
993
+
994
+ # Baichuan2-13B-Chat template
995
+ register_conv_template(
996
+ # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
997
+ # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
998
+ # https://github.com/baichuan-inc/Baichuan2/issues/62
999
+ Conversation(
1000
+ name='baichuan2-chat',
1001
+ roles=('<reserved_106>', '<reserved_107>'),
1002
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1003
+ sep='',
1004
+ stop_token_ids=[],
1005
+ )
1006
+ )
1007
+
1008
+ # Mistral template
1009
+ # source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
1010
+ register_conv_template(
1011
+ Conversation(
1012
+ name='mistral',
1013
+ system_template='[INST]{system_message}\n',
1014
+ roles=('[INST]', '[/INST]'),
1015
+ sep_style=SeparatorStyle.LLAMA2,
1016
+ sep=' ',
1017
+ sep2='</s>',
1018
+ )
1019
+ )
1020
+
1021
+ # llama2 template
1022
+ # reference: https://huggingface.co/blog/codellama#conversational-instructions
1023
+ # reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
1024
+ register_conv_template(
1025
+ Conversation(
1026
+ name='llama-2',
1027
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1028
+ roles=('[INST]', '[/INST]'),
1029
+ sep_style=SeparatorStyle.LLAMA2,
1030
+ sep=' ',
1031
+ sep2=' </s><s>',
1032
+ )
1033
+ )
1034
+
1035
+ register_conv_template(
1036
+ Conversation(
1037
+ name='cutegpt',
1038
+ roles=('问:', '答:\n'),
1039
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1040
+ sep='\n',
1041
+ sep2='\n',
1042
+ stop_str='<end>',
1043
+ )
1044
+ )
1045
+
1046
+ # OpenOrcaxOpenChat-naPreview2-13B template
1047
+ register_conv_template(
1048
+ Conversation(
1049
+ name='open-orca',
1050
+ system_template='{system_message}',
1051
+ system_message='You are a helpful assistant. Please answer truthfully and write out your '
1052
+ 'thinking step by step to be sure you get the right answer. If you make a mistake or encounter '
1053
+ "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
1054
+ "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
1055
+ 'and physicist. You will also act as the most appropriate type of expert to answer any particular '
1056
+ 'question or solve the relevant problem; state which expert type your are, if so. Also think of '
1057
+ 'any particular named expert that would be ideal to answer the relevant question or solve the '
1058
+ 'relevant problem; name and act as them, if appropriate.',
1059
+ roles=('User', 'Assistant'),
1060
+ sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
1061
+ sep='<|end_of_turn|>\n',
1062
+ stop_token_ids=[32000, 32001], # "<|end_of_turn|>"
1063
+ stop_str='User',
1064
+ )
1065
+ )
1066
+
1067
+ # Open-Orca/Mistral-7B-OpenOrca template
1068
+ # source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
1069
+ # reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
1070
+ register_conv_template(
1071
+ Conversation(
1072
+ name='mistral-7b-openorca',
1073
+ system_template='<|im_start|>system\n{system_message}',
1074
+ system_message='You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!',
1075
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1076
+ sep_style=SeparatorStyle.CHATML,
1077
+ sep='<|im_end|>',
1078
+ stop_token_ids=[32000, 32001],
1079
+ )
1080
+ )
1081
+
1082
+ # Qwen-chat default template
1083
+ # source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
1084
+ register_conv_template(
1085
+ Conversation(
1086
+ name='qwen-7b-chat',
1087
+ system_template='<|im_start|>system\n{system_message}',
1088
+ system_message='You are a helpful assistant.',
1089
+ roles=('<|im_start|>user', '<|im_start|>assistant'),
1090
+ sep_style=SeparatorStyle.CHATML,
1091
+ sep='<|im_end|>',
1092
+ stop_token_ids=[
1093
+ 151643,
1094
+ 151644,
1095
+ 151645,
1096
+ ], # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
1097
+ stop_str='<|endoftext|>',
1098
+ )
1099
+ )
1100
+
1101
+
1102
+ # AquilaChat default template
1103
+ # source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
1104
+ register_conv_template(
1105
+ Conversation(
1106
+ name='aquila-chat',
1107
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1108
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1109
+ roles=('Human', 'Assistant'),
1110
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1111
+ sep='###',
1112
+ sep2='',
1113
+ stop_str=['###', '</s>', '[UNK]'],
1114
+ )
1115
+ )
1116
+ # AquilaChat2-34B default template
1117
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
1118
+ register_conv_template(
1119
+ Conversation(
1120
+ name='aquila-legacy',
1121
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1122
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
1123
+ roles=('### Human: ', '### Assistant: '),
1124
+ offset=0,
1125
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1126
+ sep='\n',
1127
+ sep2='</s>',
1128
+ stop_str=['</s>', '[UNK]'],
1129
+ )
1130
+ )
1131
+ # AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
1132
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
1133
+ register_conv_template(
1134
+ Conversation(
1135
+ name='aquila',
1136
+ system_message='A chat between a curious human and an artificial intelligence assistant. '
1137
+ "The assistant gives helpful, detailed, and polite answers to the human's questions.",
1138
+ roles=('Human', 'Assistant'),
1139
+ offset=0,
1140
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1141
+ sep='###',
1142
+ sep2='</s>',
1143
+ stop_str=['</s>', '[UNK]'],
1144
+ )
1145
+ )
1146
+
1147
+ # AquilaChat2-7B default template
1148
+ # source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
1149
+ register_conv_template(
1150
+ Conversation(
1151
+ name='aquila-v1',
1152
+ roles=('<|startofpiece|>', '<|endofpiece|>'),
1153
+ offset=0,
1154
+ sep_style=SeparatorStyle.NO_COLON_TWO,
1155
+ sep='',
1156
+ sep2='</s>',
1157
+ stop_str=['</s>', '<|endoftext|>'],
1158
+ )
1159
+ )
1160
+
1161
+ # Llama2-Chinese default template
1162
+ # source: https://huggingface.co/FlagAlpha
1163
+ register_conv_template(
1164
+ Conversation(
1165
+ name='llama2-chinese',
1166
+ system_template='<s>{system_message}</s>',
1167
+ roles=('Human', 'Assistant', 'System'),
1168
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1169
+ sep='\n',
1170
+ sep2='\n</s><s>',
1171
+ stop_str='</s>',
1172
+ )
1173
+ )
1174
+
1175
+ # Vigogne Instruct default template
1176
+ # source: https://github.com/bofenghuang/vigogne
1177
+ register_conv_template(
1178
+ Conversation(
1179
+ name='vigogne_instruct',
1180
+ system_template='### System:\n{system_message}\n\n',
1181
+ system_message=(
1182
+ 'Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière'
1183
+ ' précise à la demande.'
1184
+ ),
1185
+ roles=('### Instruction', '### Response'),
1186
+ sep_style=SeparatorStyle.DOLLY,
1187
+ sep='\n\n',
1188
+ sep2='</s>',
1189
+ )
1190
+ )
1191
+
1192
+ # Vigogne Chat default template
1193
+ register_conv_template(
1194
+ Conversation(
1195
+ name='vigogne_chat_v2',
1196
+ system_template='<|system|>: {system_message}',
1197
+ system_message=(
1198
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1199
+ ' autant que vous le pouvez.'
1200
+ ),
1201
+ roles=('<|user|>', '<|assistant|>'),
1202
+ sep_style=SeparatorStyle.ADD_COLON_TWO,
1203
+ sep='\n',
1204
+ sep2='</s>\n',
1205
+ stop_str='<|user|>',
1206
+ )
1207
+ )
1208
+
1209
+ register_conv_template(
1210
+ Conversation(
1211
+ name='vigogne_chat_v3',
1212
+ system_template='[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n',
1213
+ system_message=(
1214
+ 'Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez'
1215
+ ' autant que vous le pouvez.'
1216
+ ),
1217
+ roles=('[INST]', '[/INST]'),
1218
+ sep_style=SeparatorStyle.LLAMA2,
1219
+ sep=' ',
1220
+ sep2=' </s>',
1221
+ )
1222
+ )
1223
+
1224
+ # Falcon 180B chat template
1225
+ # source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
1226
+ register_conv_template(
1227
+ Conversation(
1228
+ name='falcon-chat',
1229
+ roles=('User', 'Falcon'),
1230
+ system_template='System: {system_message}',
1231
+ messages=[],
1232
+ sep_style=SeparatorStyle.FALCON_CHAT,
1233
+ sep='\n',
1234
+ sep2='<|endoftext|>',
1235
+ stop_str='\nUser:', # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
1236
+ )
1237
+ )
1238
+
1239
+ # Phind template
1240
+ # source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
1241
+ register_conv_template(
1242
+ Conversation(
1243
+ name='phind',
1244
+ system_message='### System Prompt\nYou are an intelligent programming assistant.',
1245
+ roles=('### User Message', '### Assistant'),
1246
+ messages=(),
1247
+ offset=0,
1248
+ sep_style=SeparatorStyle.ADD_COLON_SINGLE,
1249
+ sep='\n\n',
1250
+ )
1251
+ )
1252
+
1253
+ # Metharme formatting for Pygmalion models
1254
+ # source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
1255
+ register_conv_template(
1256
+ Conversation(
1257
+ name='metharme',
1258
+ system_template='<|system|>{system_message}',
1259
+ system_message="""Enter RP mode. You shall reply to the user while staying
1260
+ in character. Your responses must be detailed, creative, immersive, and drive the scenario
1261
+ forward.""",
1262
+ roles=('<|user|>', '<|model|>'),
1263
+ sep_style=SeparatorStyle.NO_COLON_SINGLE,
1264
+ sep='',
1265
+ stop_str='<|user|>',
1266
+ )
1267
+ )
1268
+
1269
+ # Zephyr template
1270
+ # reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
1271
+ register_conv_template(
1272
+ Conversation(
1273
+ name='zephyr',
1274
+ system_template='<|system|>\n{system_message}',
1275
+ roles=('<|user|>', '<|assistant|>'),
1276
+ sep_style=SeparatorStyle.CHATML,
1277
+ sep='</s>',
1278
+ stop_token_ids=[2],
1279
+ stop_str='</s>',
1280
+ )
1281
+ )
1282
+
1283
+ # InternVL-ZH template
1284
+ register_conv_template(
1285
+ Conversation(
1286
+ name='internvl_zh',
1287
+ system_template='',
1288
+ roles=('<human>', '<bot>'),
1289
+ sep_style=SeparatorStyle.INTERNVL_ZH,
1290
+ sep=' ',
1291
+ sep2='</s>',
1292
+ )
1293
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_sample": true,
3
+ "eos_token_id": 2,
4
+ "max_new_tokens": 2048,
5
+ "pad_token_id": 2,
6
+ "temperature": 0.3,
7
+ "top_k": 20,
8
+ "top_p": 0.7,
9
+ "transformers_version": "4.42.3"
10
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ try: # v1
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_unpadded_qkvpacked_func
26
+ except: # v2
27
+ from flash_attn.flash_attn_interface import \
28
+ flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
+
30
+ from flash_attn.bert_padding import pad_input, unpad_input
31
+
32
+ has_flash_attn = True
33
+ except:
34
+ print('FlashAttention is not installed.')
35
+ has_flash_attn = False
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ class FlashAttention(nn.Module):
41
+ """Implement the scaled dot product attention with softmax.
42
+ Arguments
43
+ ---------
44
+ softmax_scale: The temperature to use for the softmax attention.
45
+ (default: 1/sqrt(d_keys) where d_keys is computed at
46
+ runtime)
47
+ attention_dropout: The dropout rate to apply to the attention
48
+ (default: 0.0)
49
+ """
50
+
51
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
52
+ super().__init__()
53
+ self.softmax_scale = softmax_scale
54
+ self.dropout_p = attention_dropout
55
+
56
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
57
+ max_s=None, need_weights=False):
58
+ """Implements the multihead softmax attention.
59
+ Arguments
60
+ ---------
61
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
62
+ if unpadded: (nnz, 3, h, d)
63
+ key_padding_mask: a bool tensor of shape (B, S)
64
+ """
65
+ assert not need_weights
66
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
67
+ assert qkv.is_cuda
68
+
69
+ if cu_seqlens is None:
70
+ batch_size = qkv.shape[0]
71
+ seqlen = qkv.shape[1]
72
+ if key_padding_mask is None:
73
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
74
+ max_s = seqlen
75
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
+ device=qkv.device)
77
+ output = flash_attn_unpadded_qkvpacked_func(
78
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
+ softmax_scale=self.softmax_scale, causal=causal
80
+ )
81
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
82
+ else:
83
+ nheads = qkv.shape[-2]
84
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
+ output_unpad = flash_attn_unpadded_qkvpacked_func(
88
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
+ softmax_scale=self.softmax_scale, causal=causal
90
+ )
91
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
92
+ indices, batch_size, seqlen),
93
+ 'b s (h d) -> b s h d', h=nheads)
94
+ else:
95
+ assert max_s is not None
96
+ output = flash_attn_unpadded_qkvpacked_func(
97
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
+ softmax_scale=self.softmax_scale, causal=causal
99
+ )
100
+
101
+ return output, None
102
+
103
+
104
+ class InternRMSNorm(nn.Module):
105
+ def __init__(self, hidden_size, eps=1e-6):
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ try:
119
+ from apex.normalization import FusedRMSNorm
120
+
121
+ InternRMSNorm = FusedRMSNorm # noqa
122
+
123
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
124
+ except ImportError:
125
+ # using the normal InternRMSNorm
126
+ pass
127
+ except Exception:
128
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
129
+ pass
130
+
131
+
132
+ NORM2FN = {
133
+ 'rms_norm': InternRMSNorm,
134
+ 'layer_norm': nn.LayerNorm,
135
+ }
136
+
137
+
138
+ class InternVisionEmbeddings(nn.Module):
139
+ def __init__(self, config: InternVisionConfig):
140
+ super().__init__()
141
+ self.config = config
142
+ self.embed_dim = config.hidden_size
143
+ self.image_size = config.image_size
144
+ self.patch_size = config.patch_size
145
+
146
+ self.class_embedding = nn.Parameter(
147
+ torch.randn(1, 1, self.embed_dim),
148
+ )
149
+
150
+ self.patch_embedding = nn.Conv2d(
151
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
152
+ )
153
+
154
+ self.num_patches = (self.image_size // self.patch_size) ** 2
155
+ self.num_positions = self.num_patches + 1
156
+
157
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
158
+
159
+ def _get_pos_embed(self, pos_embed, H, W):
160
+ target_dtype = pos_embed.dtype
161
+ pos_embed = pos_embed.float().reshape(
162
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
163
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
164
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
165
+ return pos_embed
166
+
167
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
168
+ target_dtype = self.patch_embedding.weight.dtype
169
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
170
+ batch_size, _, height, width = patch_embeds.shape
171
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
172
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
173
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
174
+ position_embedding = torch.cat([
175
+ self.position_embedding[:, :1, :],
176
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
177
+ ], dim=1)
178
+ embeddings = embeddings + position_embedding.to(target_dtype)
179
+ return embeddings
180
+
181
+
182
+ class InternAttention(nn.Module):
183
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
184
+
185
+ def __init__(self, config: InternVisionConfig):
186
+ super().__init__()
187
+ self.config = config
188
+ self.embed_dim = config.hidden_size
189
+ self.num_heads = config.num_attention_heads
190
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
191
+ if config.use_flash_attn and not has_flash_attn:
192
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
193
+ self.head_dim = self.embed_dim // self.num_heads
194
+ if self.head_dim * self.num_heads != self.embed_dim:
195
+ raise ValueError(
196
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
197
+ f' {self.num_heads}).'
198
+ )
199
+
200
+ self.scale = self.head_dim ** -0.5
201
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
202
+ self.attn_drop = nn.Dropout(config.attention_dropout)
203
+ self.proj_drop = nn.Dropout(config.dropout)
204
+
205
+ self.qk_normalization = config.qk_normalization
206
+
207
+ if self.qk_normalization:
208
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
209
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
210
+
211
+ if self.use_flash_attn:
212
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
213
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
214
+
215
+ def _naive_attn(self, x):
216
+ B, N, C = x.shape
217
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
218
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
219
+
220
+ if self.qk_normalization:
221
+ B_, H_, N_, D_ = q.shape
222
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
223
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
224
+
225
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
226
+ attn = attn.softmax(dim=-1)
227
+ attn = self.attn_drop(attn)
228
+
229
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
230
+ x = self.proj(x)
231
+ x = self.proj_drop(x)
232
+ return x
233
+
234
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
235
+ qkv = self.qkv(x)
236
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
237
+
238
+ if self.qk_normalization:
239
+ q, k, v = qkv.unbind(2)
240
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
241
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
242
+ qkv = torch.stack([q, k, v], dim=2)
243
+
244
+ context, _ = self.inner_attn(
245
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
246
+ )
247
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
248
+ outs = self.proj_drop(outs)
249
+ return outs
250
+
251
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
252
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
253
+ return x
254
+
255
+
256
+ class InternMLP(nn.Module):
257
+ def __init__(self, config: InternVisionConfig):
258
+ super().__init__()
259
+ self.config = config
260
+ self.act = ACT2FN[config.hidden_act]
261
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
262
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
263
+
264
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
265
+ hidden_states = self.fc1(hidden_states)
266
+ hidden_states = self.act(hidden_states)
267
+ hidden_states = self.fc2(hidden_states)
268
+ return hidden_states
269
+
270
+
271
+ class InternVisionEncoderLayer(nn.Module):
272
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
273
+ super().__init__()
274
+ self.embed_dim = config.hidden_size
275
+ self.intermediate_size = config.intermediate_size
276
+ self.norm_type = config.norm_type
277
+
278
+ self.attn = InternAttention(config)
279
+ self.mlp = InternMLP(config)
280
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
281
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
282
+
283
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
284
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
285
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
286
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
287
+
288
+ def forward(
289
+ self,
290
+ hidden_states: torch.Tensor,
291
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
292
+ """
293
+ Args:
294
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
295
+ """
296
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states)) * self.ls1)
297
+
298
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
299
+
300
+ return hidden_states
301
+
302
+
303
+ class InternVisionEncoder(nn.Module):
304
+ """
305
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
306
+ [`InternEncoderLayer`].
307
+
308
+ Args:
309
+ config (`InternConfig`):
310
+ The corresponding vision configuration for the `InternEncoder`.
311
+ """
312
+
313
+ def __init__(self, config: InternVisionConfig):
314
+ super().__init__()
315
+ self.config = config
316
+ # stochastic depth decay rule
317
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
318
+ self.layers = nn.ModuleList([
319
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
320
+ self.gradient_checkpointing = True
321
+
322
+ def forward(
323
+ self,
324
+ inputs_embeds,
325
+ output_hidden_states: Optional[bool] = None,
326
+ return_dict: Optional[bool] = None,
327
+ ) -> Union[Tuple, BaseModelOutput]:
328
+ r"""
329
+ Args:
330
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
331
+ Embedded representation of the inputs. Should be float, not int tokens.
332
+ output_hidden_states (`bool`, *optional*):
333
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
334
+ for more detail.
335
+ return_dict (`bool`, *optional*):
336
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
337
+ """
338
+ output_hidden_states = (
339
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
340
+ )
341
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
342
+
343
+ encoder_states = () if output_hidden_states else None
344
+ hidden_states = inputs_embeds
345
+
346
+ for idx, encoder_layer in enumerate(self.layers):
347
+ if output_hidden_states:
348
+ encoder_states = encoder_states + (hidden_states,)
349
+ if self.gradient_checkpointing and self.training:
350
+ layer_outputs = torch.utils.checkpoint.checkpoint(
351
+ encoder_layer,
352
+ hidden_states)
353
+ else:
354
+ layer_outputs = encoder_layer(
355
+ hidden_states,
356
+ )
357
+ hidden_states = layer_outputs
358
+
359
+ if output_hidden_states:
360
+ encoder_states = encoder_states + (hidden_states,)
361
+
362
+ if not return_dict:
363
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
364
+ return BaseModelOutput(
365
+ last_hidden_state=hidden_states, hidden_states=encoder_states
366
+ )
367
+
368
+
369
+ class InternVisionModel(PreTrainedModel):
370
+ main_input_name = 'pixel_values'
371
+ config_class = InternVisionConfig
372
+ _no_split_modules = ['InternVisionEncoderLayer']
373
+
374
+ def __init__(self, config: InternVisionConfig):
375
+ super().__init__(config)
376
+ self.config = config
377
+
378
+ self.embeddings = InternVisionEmbeddings(config)
379
+ self.encoder = InternVisionEncoder(config)
380
+
381
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
382
+ pos_emb = self.embeddings.position_embedding
383
+ _, num_positions, embed_dim = pos_emb.shape
384
+ cls_emb = pos_emb[:, :1, :]
385
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
386
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
387
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
388
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
389
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
390
+ self.embeddings.image_size = new_size
391
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
392
+
393
+ def get_input_embeddings(self):
394
+ return self.embeddings
395
+
396
+ def forward(
397
+ self,
398
+ pixel_values: Optional[torch.FloatTensor] = None,
399
+ output_hidden_states: Optional[bool] = None,
400
+ return_dict: Optional[bool] = None,
401
+ pixel_embeds: Optional[torch.FloatTensor] = None,
402
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
403
+ output_hidden_states = (
404
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
405
+ )
406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
407
+
408
+ if pixel_values is None and pixel_embeds is None:
409
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
410
+
411
+ if pixel_embeds is not None:
412
+ hidden_states = pixel_embeds
413
+ else:
414
+ if len(pixel_values.shape) == 4:
415
+ hidden_states = self.embeddings(pixel_values)
416
+ else:
417
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
418
+ encoder_outputs = self.encoder(
419
+ inputs_embeds=hidden_states,
420
+ output_hidden_states=output_hidden_states,
421
+ return_dict=return_dict,
422
+ )
423
+ last_hidden_state = encoder_outputs.last_hidden_state
424
+ pooled_output = last_hidden_state[:, 0, :]
425
+
426
+ if not return_dict:
427
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
428
+
429
+ return BaseModelOutputWithPooling(
430
+ last_hidden_state=last_hidden_state,
431
+ pooler_output=pooled_output,
432
+ hidden_states=encoder_outputs.hidden_states,
433
+ attentions=encoder_outputs.attentions,
434
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,358 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ from peft import LoraConfig, get_peft_model
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ LlamaTokenizer)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .modeling_intern_vit import InternVisionModel
21
+ from .modeling_phi3 import Phi3ForCausalLM
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class InternVLChatModel(PreTrainedModel):
27
+ config_class = InternVLChatConfig
28
+ main_input_name = 'pixel_values'
29
+ _no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
30
+
31
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
32
+ super().__init__(config)
33
+
34
+ image_size = config.force_image_size or config.vision_config.image_size
35
+ patch_size = config.vision_config.patch_size
36
+ self.patch_size = patch_size
37
+ self.select_layer = config.select_layer
38
+ self.template = config.template
39
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
40
+ self.downsample_ratio = config.downsample_ratio
41
+ self.ps_version = config.ps_version
42
+
43
+ logger.info(f'num_image_token: {self.num_image_token}')
44
+ logger.info(f'ps_version: {self.ps_version}')
45
+ if vision_model is not None:
46
+ self.vision_model = vision_model
47
+ else:
48
+ self.vision_model = InternVisionModel(config.vision_config)
49
+ if language_model is not None:
50
+ self.language_model = language_model
51
+ else:
52
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
53
+ self.language_model = LlamaForCausalLM(config.llm_config)
54
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
55
+ self.language_model = Phi3ForCausalLM(config.llm_config)
56
+ else:
57
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
58
+
59
+ vit_hidden_size = config.vision_config.hidden_size
60
+ llm_hidden_size = config.llm_config.hidden_size
61
+
62
+ self.mlp1 = nn.Sequential(
63
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
64
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
65
+ nn.GELU(),
66
+ nn.Linear(llm_hidden_size, llm_hidden_size)
67
+ )
68
+
69
+ # if config.force_image_size != config.vision_config.image_size:
70
+ # self.vision_model.resize_pos_embeddings(
71
+ # old_size=config.vision_config.image_size,
72
+ # new_size=config.force_image_size,
73
+ # patch_size=config.vision_config.patch_size
74
+ # )
75
+
76
+ self.img_context_token_id = None
77
+ self.neftune_alpha = None
78
+
79
+ if config.use_backbone_lora:
80
+ self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
81
+
82
+ if config.use_llm_lora:
83
+ self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
84
+
85
+ def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
86
+ lora_config = LoraConfig(
87
+ r=r,
88
+ target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
89
+ lora_alpha=lora_alpha,
90
+ lora_dropout=lora_dropout,
91
+ )
92
+ self.vision_model = get_peft_model(self.vision_model, lora_config)
93
+ self.vision_model.print_trainable_parameters()
94
+
95
+ def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
96
+ lora_config = LoraConfig(
97
+ r=r,
98
+ target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
99
+ 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
100
+ lora_alpha=lora_alpha,
101
+ lora_dropout=lora_dropout,
102
+ task_type='CAUSAL_LM'
103
+ )
104
+ self.language_model = get_peft_model(self.language_model, lora_config)
105
+ self.language_model.enable_input_require_grads()
106
+ self.language_model.print_trainable_parameters()
107
+
108
+ def forward(
109
+ self,
110
+ pixel_values: torch.FloatTensor,
111
+ input_ids: torch.LongTensor = None,
112
+ attention_mask: Optional[torch.Tensor] = None,
113
+ position_ids: Optional[torch.LongTensor] = None,
114
+ image_flags: Optional[torch.LongTensor] = None,
115
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
116
+ labels: Optional[torch.LongTensor] = None,
117
+ use_cache: Optional[bool] = None,
118
+ output_attentions: Optional[bool] = None,
119
+ output_hidden_states: Optional[bool] = None,
120
+ return_dict: Optional[bool] = None,
121
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
122
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
123
+
124
+ image_flags = image_flags.squeeze(-1)
125
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
126
+
127
+ vit_embeds = self.extract_feature(pixel_values)
128
+ vit_embeds = vit_embeds[image_flags == 1]
129
+ vit_batch_size = pixel_values.shape[0]
130
+
131
+ B, N, C = input_embeds.shape
132
+ input_embeds = input_embeds.reshape(B * N, C)
133
+
134
+ if torch.distributed.get_rank() == 0:
135
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
136
+
137
+ input_ids = input_ids.reshape(B * N)
138
+ selected = (input_ids == self.img_context_token_id)
139
+ try:
140
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
141
+ except Exception as e:
142
+ vit_embeds = vit_embeds.reshape(-1, C)
143
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
144
+ f'vit_embeds.shape={vit_embeds.shape}')
145
+ n_token = selected.sum()
146
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
147
+
148
+ input_embeds = input_embeds.reshape(B, N, C)
149
+
150
+ outputs = self.language_model(
151
+ inputs_embeds=input_embeds,
152
+ attention_mask=attention_mask,
153
+ position_ids=position_ids,
154
+ past_key_values=past_key_values,
155
+ use_cache=use_cache,
156
+ output_attentions=output_attentions,
157
+ output_hidden_states=output_hidden_states,
158
+ return_dict=return_dict,
159
+ )
160
+ logits = outputs.logits
161
+
162
+ loss = None
163
+ if labels is not None:
164
+ # Shift so that tokens < n predict n
165
+ shift_logits = logits[..., :-1, :].contiguous()
166
+ shift_labels = labels[..., 1:].contiguous()
167
+ # Flatten the tokens
168
+ loss_fct = CrossEntropyLoss()
169
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
170
+ shift_labels = shift_labels.view(-1)
171
+ # Enable model parallelism
172
+ shift_labels = shift_labels.to(shift_logits.device)
173
+ loss = loss_fct(shift_logits, shift_labels)
174
+
175
+ if not return_dict:
176
+ output = (logits,) + outputs[1:]
177
+ return (loss,) + output if loss is not None else output
178
+
179
+ return CausalLMOutputWithPast(
180
+ loss=loss,
181
+ logits=logits,
182
+ past_key_values=outputs.past_key_values,
183
+ hidden_states=outputs.hidden_states,
184
+ attentions=outputs.attentions,
185
+ )
186
+
187
+ def pixel_shuffle(self, x, scale_factor=0.5):
188
+ n, w, h, c = x.size()
189
+ # N, W, H, C --> N, W, H * scale, C // scale
190
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
191
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
192
+ x = x.permute(0, 2, 1, 3).contiguous()
193
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
194
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
195
+ int(c / (scale_factor * scale_factor)))
196
+ if self.ps_version == 'v1':
197
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
198
+ 'which results in a transposed image.')
199
+ else:
200
+ x = x.permute(0, 2, 1, 3).contiguous()
201
+ return x
202
+
203
+ def noised_embed(self, vit_embeds, noise_alpha=5):
204
+ dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2))
205
+ mag_norm = noise_alpha / torch.sqrt(dims)
206
+ noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm)
207
+ return vit_embeds + noise
208
+
209
+ def extract_feature(self, pixel_values):
210
+ if self.select_layer == -1:
211
+ vit_embeds = self.vision_model(
212
+ pixel_values=pixel_values,
213
+ output_hidden_states=False,
214
+ return_dict=True).last_hidden_state
215
+ else:
216
+ vit_embeds = self.vision_model(
217
+ pixel_values=pixel_values,
218
+ output_hidden_states=True,
219
+ return_dict=True).hidden_states[self.select_layer]
220
+ vit_embeds = vit_embeds[:, 1:, :]
221
+
222
+ if self.training and self.neftune_alpha is not None:
223
+ vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)
224
+
225
+ h = w = int(vit_embeds.shape[1] ** 0.5)
226
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
227
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
228
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
229
+ vit_embeds = self.mlp1(vit_embeds)
230
+ return vit_embeds
231
+
232
+ def batch_chat(self, tokenizer, pixel_values, image_counts, questions, generation_config, history=None,
233
+ return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
234
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
235
+ if history is not None or return_history:
236
+ print('Now multi-turn chat is not supported in batch_chat.')
237
+ raise NotImplementedError
238
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
239
+ self.img_context_token_id = img_context_token_id
240
+
241
+ from .conversation import get_conv_template
242
+
243
+ queries = []
244
+ image_bs = pixel_values.shape[0]
245
+ # print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}')
246
+ for idx, image_count in enumerate(image_counts):
247
+ image_token = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN
248
+ question = image_token + '\n' + questions[idx]
249
+ template = get_conv_template(self.template)
250
+ template.append_message(template.roles[0], question)
251
+ template.append_message(template.roles[1], None)
252
+ query = template.get_prompt()
253
+ queries.append(query)
254
+ tokenizer.padding_side = 'left'
255
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
256
+ input_ids = model_inputs['input_ids'].cuda()
257
+ attention_mask = model_inputs['attention_mask'].cuda()
258
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
259
+ generation_config['eos_token_id'] = eos_token_id
260
+
261
+ generation_output = self.generate(
262
+ pixel_values=pixel_values,
263
+ input_ids=input_ids,
264
+ attention_mask=attention_mask,
265
+ **generation_config
266
+ )
267
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
268
+ responses = [response.split(template.sep)[0].strip() for response in responses]
269
+ return responses
270
+
271
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
272
+ IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):
273
+
274
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
275
+ self.img_context_token_id = img_context_token_id
276
+
277
+ from .conversation import get_conv_template
278
+
279
+ template = get_conv_template(self.template)
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+ if history is None:
283
+ history = []
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN
285
+ question = image_tokens + '\n' + question
286
+ else:
287
+ for (old_question, old_answer) in history:
288
+ template.append_message(template.roles[0], old_question)
289
+ template.append_message(template.roles[1], old_answer)
290
+ template.append_message(template.roles[0], question)
291
+ template.append_message(template.roles[1], None)
292
+ query = template.get_prompt()
293
+ model_inputs = tokenizer(query, return_tensors='pt')
294
+ input_ids = model_inputs['input_ids'].cuda()
295
+ attention_mask = model_inputs['attention_mask'].cuda()
296
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
297
+ generation_config['eos_token_id'] = eos_token_id
298
+
299
+ generation_output = self.generate(
300
+ pixel_values=pixel_values,
301
+ input_ids=input_ids,
302
+ attention_mask=attention_mask,
303
+ **generation_config
304
+ )
305
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
306
+ response = response.split(template.sep)[0].strip()
307
+ history.append((question, response))
308
+ if return_history:
309
+ return response, history
310
+ else:
311
+ # query_to_print = query.replace(image_tokens, '<image>')
312
+ # print(query_to_print, response)
313
+ return response
314
+ return response
315
+
316
+ @torch.no_grad()
317
+ def generate(
318
+ self,
319
+ pixel_values: Optional[torch.FloatTensor] = None,
320
+ input_ids: Optional[torch.FloatTensor] = None,
321
+ attention_mask: Optional[torch.LongTensor] = None,
322
+ visual_features: Optional[torch.FloatTensor] = None,
323
+ generation_config: Optional[GenerationConfig] = None,
324
+ output_hidden_states: Optional[bool] = None,
325
+ return_dict: Optional[bool] = None,
326
+ **generate_kwargs,
327
+ ) -> torch.LongTensor:
328
+
329
+ assert self.img_context_token_id is not None
330
+ if pixel_values is not None:
331
+ if visual_features is not None:
332
+ vit_embeds = visual_features
333
+ else:
334
+ vit_embeds = self.extract_feature(pixel_values)
335
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
336
+ B, N, C = input_embeds.shape
337
+ input_embeds = input_embeds.reshape(B * N, C)
338
+
339
+ input_ids = input_ids.reshape(B * N)
340
+ selected = (input_ids == self.img_context_token_id)
341
+ assert selected.sum() != 0
342
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
343
+
344
+ input_embeds = input_embeds.reshape(B, N, C)
345
+ else:
346
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
347
+
348
+ outputs = self.language_model.generate(
349
+ inputs_embeds=input_embeds,
350
+ attention_mask=attention_mask,
351
+ generation_config=generation_config,
352
+ output_hidden_states=output_hidden_states,
353
+ return_dict=return_dict,
354
+ use_cache=True,
355
+ **generate_kwargs,
356
+ )
357
+
358
+ return outputs
modeling_phi3.py ADDED
@@ -0,0 +1,1601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ PyTorch Phi-3 model."""
16
+
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import \
30
+ _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ TokenClassifierOutput)
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ from .configuration_phi3 import Phi3Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
48
+ # if is_flash_attn_2_available():
49
+ _flash_supports_window_size = False
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
53
+ unpad_input)
54
+
55
+ _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
56
+ except ImportError as error:
57
+ logger.warning(
58
+ f'`flash-attention` package not found, consider installing for better performance: {error}.'
59
+ )
60
+ if not _flash_supports_window_size:
61
+ logger.warning(
62
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
63
+ )
64
+
65
+ _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
66
+ _CONFIG_FOR_DOC = 'Phi3Config'
67
+
68
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
69
+ 'microsoft/Phi-3-mini-4k-instruct',
70
+ 'microsoft/Phi-3-mini-128k-instruct',
71
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
72
+ ]
73
+
74
+
75
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
76
+ class Phi3RMSNorm(nn.Module):
77
+ def __init__(self, hidden_size, eps=1e-6):
78
+ """
79
+ Phi3RMSNorm is equivalent to T5LayerNorm
80
+ """
81
+ super().__init__()
82
+ self.weight = nn.Parameter(torch.ones(hidden_size))
83
+ self.variance_epsilon = eps
84
+
85
+ def forward(self, hidden_states):
86
+ input_dtype = hidden_states.dtype
87
+ hidden_states = hidden_states.to(torch.float32)
88
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
89
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
90
+ return self.weight * hidden_states.to(input_dtype)
91
+
92
+
93
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
94
+ def _get_unpad_data(attention_mask):
95
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
96
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
97
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
98
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
99
+ return (
100
+ indices,
101
+ cu_seqlens,
102
+ max_seqlen_in_batch,
103
+ )
104
+
105
+
106
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
107
+ class Phi3RotaryEmbedding(nn.Module):
108
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
109
+ super().__init__()
110
+
111
+ self.dim = dim
112
+ self.max_position_embeddings = max_position_embeddings
113
+ self.base = base
114
+ self.register_buffer('inv_freq', None, persistent=False)
115
+
116
+ @torch.no_grad()
117
+ def forward(self, x, position_ids, seq_len=None):
118
+ # x: [bs, num_attention_heads, seq_len, head_size]
119
+ if self.inv_freq is None:
120
+ self.inv_freq = 1.0 / (
121
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
122
+ )
123
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
124
+ position_ids_expanded = position_ids[:, None, :].float()
125
+ # Force float32 since bfloat16 loses precision on long contexts
126
+ # See https://github.com/huggingface/transformers/pull/29285
127
+ device_type = x.device.type
128
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
129
+ with torch.autocast(device_type=device_type, enabled=False):
130
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
131
+ emb = torch.cat((freqs, freqs), dim=-1)
132
+ cos = emb.cos()
133
+ sin = emb.sin()
134
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
135
+
136
+
137
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
138
+ def __init__(self, dim, config, device=None):
139
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
140
+
141
+ self.short_factor = config.rope_scaling['short_factor']
142
+ self.long_factor = config.rope_scaling['long_factor']
143
+ self.original_max_position_embeddings = config.original_max_position_embeddings
144
+
145
+ @torch.no_grad()
146
+ def forward(self, x, position_ids, seq_len=None):
147
+ seq_len = torch.max(position_ids) + 1
148
+ if seq_len > self.original_max_position_embeddings:
149
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
150
+ else:
151
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
152
+
153
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
154
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
155
+
156
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
157
+ position_ids_expanded = position_ids[:, None, :].float()
158
+
159
+ # Force float32 since bfloat16 loses precision on long contexts
160
+ # See https://github.com/huggingface/transformers/pull/29285
161
+ device_type = x.device.type
162
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
163
+ with torch.autocast(device_type=device_type, enabled=False):
164
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
165
+ emb = torch.cat((freqs, freqs), dim=-1)
166
+
167
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
168
+ if scale <= 1.0:
169
+ scaling_factor = 1.0
170
+ else:
171
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
172
+
173
+ cos = emb.cos() * scaling_factor
174
+ sin = emb.sin() * scaling_factor
175
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
176
+
177
+
178
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
179
+ def __init__(self, dim, config, device=None):
180
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
181
+
182
+ self.short_factor = config.rope_scaling['short_factor']
183
+ self.long_factor = config.rope_scaling['long_factor']
184
+ self.original_max_position_embeddings = config.original_max_position_embeddings
185
+
186
+ @torch.no_grad()
187
+ def forward(self, x, position_ids, seq_len=None):
188
+ seq_len = torch.max(position_ids) + 1
189
+ if seq_len > self.original_max_position_embeddings:
190
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
191
+ else:
192
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
193
+
194
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
195
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
196
+
197
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
198
+ position_ids_expanded = position_ids[:, None, :].float()
199
+
200
+ # Force float32 since bfloat16 loses precision on long contexts
201
+ # See https://github.com/huggingface/transformers/pull/29285
202
+ device_type = x.device.type
203
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
204
+ with torch.autocast(device_type=device_type, enabled=False):
205
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
206
+ emb = torch.cat((freqs, freqs), dim=-1)
207
+
208
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
209
+ if scale <= 1.0:
210
+ scaling_factor = 1.0
211
+ else:
212
+ scaling_factor = 0.1 * math.log(scale) + 1.0
213
+
214
+ cos = emb.cos() * scaling_factor
215
+ sin = emb.sin() * scaling_factor
216
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
217
+
218
+
219
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
220
+ def rotate_half(x):
221
+ """Rotates half the hidden dims of the input."""
222
+ x1 = x[..., : x.shape[-1] // 2]
223
+ x2 = x[..., x.shape[-1] // 2 :]
224
+ return torch.cat((-x2, x1), dim=-1)
225
+
226
+
227
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
228
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
229
+ """Applies Rotary Position Embedding to the query and key tensors.
230
+
231
+ Args:
232
+ q (`torch.Tensor`): The query tensor.
233
+ k (`torch.Tensor`): The key tensor.
234
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
235
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
236
+ position_ids (`torch.Tensor`, *optional*):
237
+ Deprecated and unused.
238
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
239
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
240
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
241
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
242
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
243
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
244
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
245
+ Returns:
246
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
247
+ """
248
+ cos = cos.unsqueeze(unsqueeze_dim)
249
+ sin = sin.unsqueeze(unsqueeze_dim)
250
+ q_embed = (q * cos) + (rotate_half(q) * sin)
251
+ k_embed = (k * cos) + (rotate_half(k) * sin)
252
+ return q_embed, k_embed
253
+
254
+
255
+ class Phi3MLP(nn.Module):
256
+ def __init__(self, config):
257
+ super().__init__()
258
+
259
+ self.config = config
260
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
261
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
262
+
263
+ self.activation_fn = ACT2FN[config.hidden_act]
264
+
265
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
266
+ up_states = self.gate_up_proj(hidden_states)
267
+
268
+ gate, up_states = up_states.chunk(2, dim=-1)
269
+ up_states = up_states * self.activation_fn(gate)
270
+
271
+ return self.down_proj(up_states)
272
+
273
+
274
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
275
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
276
+ """
277
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
278
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
279
+ """
280
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
281
+ if n_rep == 1:
282
+ return hidden_states
283
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
284
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
285
+
286
+
287
+ class Phi3Attention(nn.Module):
288
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
289
+
290
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
291
+ super().__init__()
292
+ self.config = config
293
+ self.layer_idx = layer_idx
294
+ if layer_idx is None:
295
+ logger.warning_once(
296
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
297
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
298
+ 'when creating this class.'
299
+ )
300
+
301
+ self.attention_dropout = config.attention_dropout
302
+ self.hidden_size = config.hidden_size
303
+ self.num_heads = config.num_attention_heads
304
+ self.head_dim = self.hidden_size // self.num_heads
305
+ self.num_key_value_heads = config.num_key_value_heads
306
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
307
+ self.max_position_embeddings = config.max_position_embeddings
308
+ self.original_max_position_embeddings = config.original_max_position_embeddings
309
+ self.rope_theta = config.rope_theta
310
+ self.rope_scaling = config.rope_scaling
311
+ self.is_causal = True
312
+
313
+ if (self.head_dim * self.num_heads) != self.hidden_size:
314
+ raise ValueError(
315
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
316
+ f' and `num_heads`: {self.num_heads}).'
317
+ )
318
+
319
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
320
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
321
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
322
+ self._init_rope()
323
+
324
+ def _init_rope(self):
325
+ if self.rope_scaling is None:
326
+ self.rotary_emb = Phi3RotaryEmbedding(
327
+ self.head_dim,
328
+ max_position_embeddings=self.max_position_embeddings,
329
+ base=self.rope_theta,
330
+ )
331
+ else:
332
+ scaling_type = self.config.rope_scaling['type']
333
+ if scaling_type == 'su':
334
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
335
+ elif scaling_type == 'yarn':
336
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
337
+ else:
338
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
339
+
340
+ def forward(
341
+ self,
342
+ hidden_states: torch.Tensor,
343
+ attention_mask: Optional[torch.Tensor] = None,
344
+ position_ids: Optional[torch.LongTensor] = None,
345
+ past_key_value: Optional[Cache] = None,
346
+ output_attentions: bool = False,
347
+ use_cache: bool = False,
348
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
349
+ logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
350
+
351
+ bsz, q_len, _ = hidden_states.size()
352
+
353
+ qkv = self.qkv_proj(hidden_states)
354
+ query_pos = self.num_heads * self.head_dim
355
+ query_states = qkv[..., :query_pos]
356
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
357
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
358
+
359
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
360
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
361
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
362
+
363
+ kv_seq_len = key_states.shape[-2]
364
+ if past_key_value is not None:
365
+ if self.layer_idx is None:
366
+ raise ValueError(
367
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
368
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
369
+ 'with a layer index.'
370
+ )
371
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
372
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
373
+
374
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
375
+
376
+ if past_key_value is not None:
377
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
378
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
379
+
380
+ # repeat k/v heads if n_kv_heads < n_heads
381
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
382
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
383
+
384
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
385
+
386
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
387
+ raise ValueError(
388
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
389
+ f' {attn_weights.size()}'
390
+ )
391
+
392
+ if attention_mask is not None:
393
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
394
+ raise ValueError(
395
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
396
+ )
397
+ attn_weights = attn_weights + attention_mask
398
+
399
+ # upcast attention to fp32
400
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
401
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
402
+
403
+ attn_output = torch.matmul(attn_weights, value_states)
404
+
405
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
406
+ raise ValueError(
407
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
408
+ f' {attn_output.size()}'
409
+ )
410
+
411
+ attn_output = attn_output.transpose(1, 2).contiguous()
412
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
413
+
414
+ attn_output = self.o_proj(attn_output)
415
+
416
+ if not output_attentions:
417
+ attn_weights = None
418
+
419
+ return attn_output, attn_weights, past_key_value
420
+
421
+
422
+ class Phi3FlashAttention2(Phi3Attention):
423
+ """
424
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
425
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
426
+ flash attention and deal with padding tokens in case the input contains any of them.
427
+ """
428
+
429
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
430
+ def __init__(self, *args, **kwargs):
431
+ super().__init__(*args, **kwargs)
432
+
433
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
434
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
435
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
436
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
437
+
438
+ def forward(
439
+ self,
440
+ hidden_states: torch.Tensor,
441
+ attention_mask: Optional[torch.LongTensor] = None,
442
+ position_ids: Optional[torch.LongTensor] = None,
443
+ past_key_value: Optional[Cache] = None,
444
+ output_attentions: bool = False,
445
+ use_cache: bool = False,
446
+ **kwargs,
447
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
448
+ # Phi3FlashAttention2 attention does not support output_attentions
449
+
450
+ if not _flash_supports_window_size:
451
+ logger.warning_once(
452
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
453
+ )
454
+ raise ValueError('The current flash attention version does not support sliding window attention.')
455
+
456
+ output_attentions = False
457
+
458
+ if 'padding_mask' in kwargs:
459
+ warnings.warn(
460
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
461
+ )
462
+
463
+ # overwrite attention_mask with padding_mask
464
+ attention_mask = kwargs.pop('padding_mask')
465
+
466
+ bsz, q_len, _ = hidden_states.size()
467
+
468
+ qkv = self.qkv_proj(hidden_states)
469
+ query_pos = self.num_heads * self.head_dim
470
+ query_states = qkv[..., :query_pos]
471
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
472
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
473
+
474
+ # Flash attention requires the input to have the shape
475
+ # batch_size x seq_length x head_dim x hidden_dim
476
+ # therefore we just need to keep the original shape
477
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
478
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
479
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
480
+
481
+ kv_seq_len = key_states.shape[-2]
482
+ if past_key_value is not None:
483
+ if self.layer_idx is None:
484
+ raise ValueError(
485
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
486
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
487
+ 'with a layer index.'
488
+ )
489
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
490
+
491
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
492
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
493
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
494
+
495
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
496
+
497
+ use_sliding_windows = (
498
+ _flash_supports_window_size
499
+ and getattr(self.config, 'sliding_window', None) is not None
500
+ and kv_seq_len > self.config.sliding_window
501
+ )
502
+
503
+ if past_key_value is not None:
504
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
505
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
506
+ if (
507
+ getattr(self.config, 'sliding_window', None) is not None
508
+ and kv_seq_len > self.config.sliding_window
509
+ and cache_has_contents
510
+ ):
511
+ slicing_tokens = 1 - self.config.sliding_window
512
+
513
+ past_key = past_key_value[self.layer_idx][0]
514
+ past_value = past_key_value[self.layer_idx][1]
515
+
516
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
517
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
518
+
519
+ if past_key.shape[-2] != self.config.sliding_window - 1:
520
+ raise ValueError(
521
+ f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
522
+ f' {past_key.shape}'
523
+ )
524
+
525
+ if attention_mask is not None:
526
+ attention_mask = attention_mask[:, slicing_tokens:]
527
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
528
+
529
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
530
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
531
+
532
+ # repeat k/v heads if n_kv_heads < n_heads
533
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
534
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
535
+
536
+ attn_dropout = self.attention_dropout if self.training else 0.0
537
+
538
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
539
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
540
+ # cast them back in the correct dtype just to be sure everything works as expected.
541
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
542
+ # in fp32.
543
+
544
+ if query_states.dtype == torch.float32:
545
+ if torch.is_autocast_enabled():
546
+ target_dtype = torch.get_autocast_gpu_dtype()
547
+ # Handle the case where the model is quantized
548
+ elif hasattr(self.config, '_pre_quantization_dtype'):
549
+ target_dtype = self.config._pre_quantization_dtype
550
+ else:
551
+ target_dtype = self.qkv_proj.weight.dtype
552
+
553
+ logger.warning_once(
554
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
555
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
556
+ f' {target_dtype}.'
557
+ )
558
+
559
+ query_states = query_states.to(target_dtype)
560
+ key_states = key_states.to(target_dtype)
561
+ value_states = value_states.to(target_dtype)
562
+
563
+ # Reashape to the expected shape for Flash Attention
564
+ query_states = query_states.transpose(1, 2)
565
+ key_states = key_states.transpose(1, 2)
566
+ value_states = value_states.transpose(1, 2)
567
+
568
+ attn_output = self._flash_attention_forward(
569
+ query_states,
570
+ key_states,
571
+ value_states,
572
+ attention_mask,
573
+ q_len,
574
+ dropout=attn_dropout,
575
+ use_sliding_windows=use_sliding_windows,
576
+ )
577
+
578
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
579
+ attn_output = self.o_proj(attn_output)
580
+
581
+ if not output_attentions:
582
+ attn_weights = None
583
+
584
+ return attn_output, attn_weights, past_key_value
585
+
586
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
587
+ def _flash_attention_forward(
588
+ self,
589
+ query_states,
590
+ key_states,
591
+ value_states,
592
+ attention_mask,
593
+ query_length,
594
+ dropout=0.0,
595
+ softmax_scale=None,
596
+ use_sliding_windows=False,
597
+ ):
598
+ """
599
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
600
+ first unpad the input, then computes the attention scores and pad the final attention scores.
601
+
602
+ Args:
603
+ query_states (`torch.Tensor`):
604
+ Input query states to be passed to Flash Attention API
605
+ key_states (`torch.Tensor`):
606
+ Input key states to be passed to Flash Attention API
607
+ value_states (`torch.Tensor`):
608
+ Input value states to be passed to Flash Attention API
609
+ attention_mask (`torch.Tensor`):
610
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
611
+ position of padding tokens and 1 for the position of non-padding tokens.
612
+ dropout (`float`):
613
+ Attention dropout
614
+ softmax_scale (`float`, *optional*):
615
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
616
+ use_sliding_windows (`bool`, *optional*):
617
+ Whether to activate sliding window attention.
618
+ """
619
+ if not self._flash_attn_uses_top_left_mask:
620
+ causal = self.is_causal
621
+ else:
622
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
623
+ causal = self.is_causal and query_length != 1
624
+
625
+ # Contains at least one padding token in the sequence
626
+ if attention_mask is not None:
627
+ batch_size = query_states.shape[0]
628
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
629
+ query_states, key_states, value_states, attention_mask, query_length
630
+ )
631
+
632
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
633
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
634
+
635
+ if not use_sliding_windows:
636
+ attn_output_unpad = flash_attn_varlen_func(
637
+ query_states,
638
+ key_states,
639
+ value_states,
640
+ cu_seqlens_q=cu_seqlens_q,
641
+ cu_seqlens_k=cu_seqlens_k,
642
+ max_seqlen_q=max_seqlen_in_batch_q,
643
+ max_seqlen_k=max_seqlen_in_batch_k,
644
+ dropout_p=dropout,
645
+ softmax_scale=softmax_scale,
646
+ causal=causal,
647
+ )
648
+ else:
649
+ attn_output_unpad = flash_attn_varlen_func(
650
+ query_states,
651
+ key_states,
652
+ value_states,
653
+ cu_seqlens_q=cu_seqlens_q,
654
+ cu_seqlens_k=cu_seqlens_k,
655
+ max_seqlen_q=max_seqlen_in_batch_q,
656
+ max_seqlen_k=max_seqlen_in_batch_k,
657
+ dropout_p=dropout,
658
+ softmax_scale=softmax_scale,
659
+ causal=causal,
660
+ window_size=(self.config.sliding_window, self.config.sliding_window),
661
+ )
662
+
663
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
664
+ else:
665
+ if not use_sliding_windows:
666
+ attn_output = flash_attn_func(
667
+ query_states,
668
+ key_states,
669
+ value_states,
670
+ dropout,
671
+ softmax_scale=softmax_scale,
672
+ causal=causal,
673
+ )
674
+ else:
675
+ attn_output = flash_attn_func(
676
+ query_states,
677
+ key_states,
678
+ value_states,
679
+ dropout,
680
+ softmax_scale=softmax_scale,
681
+ causal=causal,
682
+ window_size=(self.config.sliding_window, self.config.sliding_window),
683
+ )
684
+
685
+ return attn_output
686
+
687
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
688
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
689
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
690
+
691
+ # On the first iteration we need to properly re-create the padding mask
692
+ # by slicing it on the proper place
693
+ if kv_seq_len != attention_mask.shape[-1]:
694
+ attention_mask_num_tokens = attention_mask.shape[-1]
695
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
696
+
697
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
698
+
699
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
700
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
701
+
702
+ if query_length == kv_seq_len:
703
+ query_layer = index_first_axis(
704
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
705
+ )
706
+ cu_seqlens_q = cu_seqlens_k
707
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
708
+ indices_q = indices_k
709
+ elif query_length == 1:
710
+ max_seqlen_in_batch_q = 1
711
+ cu_seqlens_q = torch.arange(
712
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
713
+ ) # There is a memcpy here, that is very bad.
714
+ indices_q = cu_seqlens_q[:-1]
715
+ query_layer = query_layer.squeeze(1)
716
+ else:
717
+ # The -q_len: slice assumes left padding.
718
+ attention_mask = attention_mask[:, -query_length:]
719
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
720
+
721
+ return (
722
+ query_layer,
723
+ key_layer,
724
+ value_layer,
725
+ indices_q,
726
+ (cu_seqlens_q, cu_seqlens_k),
727
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
728
+ )
729
+
730
+
731
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
732
+ # TODO @Arthur no longer copied from LLama after static cache
733
+ class Phi3SdpaAttention(Phi3Attention):
734
+ """
735
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
736
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
737
+ SDPA API.
738
+ """
739
+
740
+ # Adapted from Phi3Attention.forward
741
+ def forward(
742
+ self,
743
+ hidden_states: torch.Tensor,
744
+ attention_mask: Optional[torch.Tensor] = None,
745
+ position_ids: Optional[torch.LongTensor] = None,
746
+ past_key_value: Optional[Cache] = None,
747
+ output_attentions: bool = False,
748
+ use_cache: bool = False,
749
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
750
+ if output_attentions:
751
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
752
+ logger.warning_once(
753
+ 'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
754
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
755
+ )
756
+ return super().forward(
757
+ hidden_states=hidden_states,
758
+ attention_mask=attention_mask,
759
+ position_ids=position_ids,
760
+ past_key_value=past_key_value,
761
+ output_attentions=output_attentions,
762
+ use_cache=use_cache,
763
+ )
764
+
765
+ bsz, q_len, _ = hidden_states.size()
766
+
767
+ qkv = self.qkv_proj(hidden_states)
768
+ query_pos = self.num_heads * self.head_dim
769
+ query_states = qkv[..., :query_pos]
770
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
771
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
772
+
773
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
774
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
775
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
776
+
777
+ kv_seq_len = key_states.shape[-2]
778
+ if past_key_value is not None:
779
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
780
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
781
+
782
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
783
+
784
+ if past_key_value is not None:
785
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
786
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
787
+
788
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
789
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
790
+
791
+ if attention_mask is not None:
792
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
793
+ raise ValueError(
794
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
795
+ )
796
+
797
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
798
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
799
+ if query_states.device.type == 'cuda' and attention_mask is not None:
800
+ query_states = query_states.contiguous()
801
+ key_states = key_states.contiguous()
802
+ value_states = value_states.contiguous()
803
+
804
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
805
+ query_states,
806
+ key_states,
807
+ value_states,
808
+ attn_mask=attention_mask,
809
+ dropout_p=self.attention_dropout if self.training else 0.0,
810
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
811
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
812
+ )
813
+
814
+ attn_output = attn_output.transpose(1, 2).contiguous()
815
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
816
+
817
+ attn_output = self.o_proj(attn_output)
818
+
819
+ return attn_output, None, past_key_value
820
+
821
+
822
+ PHI3_ATTENTION_CLASSES = {
823
+ 'eager': Phi3Attention,
824
+ 'flash_attention_2': Phi3FlashAttention2,
825
+ 'sdpa': Phi3SdpaAttention,
826
+ }
827
+
828
+
829
+ class Phi3DecoderLayer(nn.Module):
830
+ def __init__(self, config: Phi3Config, layer_idx: int):
831
+ super().__init__()
832
+
833
+ self.config = config
834
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
835
+
836
+ self.mlp = Phi3MLP(config)
837
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
838
+
839
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
840
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
841
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
842
+
843
+ def forward(
844
+ self,
845
+ hidden_states: torch.Tensor,
846
+ attention_mask: Optional[torch.Tensor] = None,
847
+ position_ids: Optional[torch.LongTensor] = None,
848
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
849
+ output_attentions: Optional[bool] = False,
850
+ use_cache: Optional[bool] = False,
851
+ **kwargs,
852
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
853
+ if 'padding_mask' in kwargs:
854
+ warnings.warn(
855
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
856
+ )
857
+ """
858
+ Args:
859
+ hidden_states (`torch.FloatTensor`):
860
+ input to the layer of shape `(batch, seq_len, embed_dim)`
861
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
862
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
863
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
864
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
865
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
866
+ output_attentions (`bool`, *optional*):
867
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
868
+ returned tensors for more detail.
869
+ use_cache (`bool`, *optional*):
870
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
871
+ (see `past_key_values`).
872
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
873
+ """
874
+
875
+ residual = hidden_states
876
+
877
+ hidden_states = self.input_layernorm(hidden_states)
878
+
879
+ # Self Attention
880
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
881
+ hidden_states=hidden_states,
882
+ attention_mask=attention_mask,
883
+ position_ids=position_ids,
884
+ past_key_value=past_key_value,
885
+ output_attentions=output_attentions,
886
+ use_cache=use_cache,
887
+ )
888
+
889
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
890
+
891
+ residual = hidden_states
892
+ hidden_states = self.post_attention_layernorm(hidden_states)
893
+ hidden_states = self.mlp(hidden_states)
894
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
895
+
896
+ outputs = (hidden_states,)
897
+
898
+ if output_attentions:
899
+ outputs += (self_attn_weights,)
900
+
901
+ if use_cache:
902
+ outputs += (present_key_value,)
903
+
904
+ return outputs
905
+
906
+
907
+ PHI3_START_DOCSTRING = r"""
908
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
909
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
910
+ etc.)
911
+
912
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
913
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
914
+ and behavior.
915
+
916
+ Parameters:
917
+ config ([`Phi3Config`]):
918
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
919
+ load the weights associated with the model, only the configuration. Check out the
920
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
921
+ """
922
+
923
+
924
+ @add_start_docstrings(
925
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
926
+ PHI3_START_DOCSTRING,
927
+ )
928
+ class Phi3PreTrainedModel(PreTrainedModel):
929
+ config_class = Phi3Config
930
+ base_model_prefix = 'model'
931
+ supports_gradient_checkpointing = True
932
+ _no_split_modules = ['Phi3DecoderLayer']
933
+ _skip_keys_device_placement = 'past_key_values'
934
+ _supports_flash_attn_2 = True
935
+ _supports_sdpa = False
936
+ _supports_cache_class = True
937
+
938
+ _version = '0.0.5'
939
+
940
+ def _init_weights(self, module):
941
+ std = self.config.initializer_range
942
+ if isinstance(module, nn.Linear):
943
+ module.weight.data.normal_(mean=0.0, std=std)
944
+ if module.bias is not None:
945
+ module.bias.data.zero_()
946
+ elif isinstance(module, nn.Embedding):
947
+ module.weight.data.normal_(mean=0.0, std=std)
948
+ if module.padding_idx is not None:
949
+ module.weight.data[module.padding_idx].zero_()
950
+
951
+
952
+ PHI3_INPUTS_DOCSTRING = r"""
953
+ Args:
954
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
955
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
956
+ it.
957
+
958
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
959
+ [`PreTrainedTokenizer.__call__`] for details.
960
+
961
+ [What are input IDs?](../glossary#input-ids)
962
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
963
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
964
+
965
+ - 1 for tokens that are **not masked**,
966
+ - 0 for tokens that are **masked**.
967
+
968
+ [What are attention masks?](../glossary#attention-mask)
969
+
970
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
971
+ [`PreTrainedTokenizer.__call__`] for details.
972
+
973
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
974
+ `past_key_values`).
975
+
976
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
977
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
978
+ information on the default strategy.
979
+
980
+ - 1 indicates the head is **not masked**,
981
+ - 0 indicates the head is **masked**.
982
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
983
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
984
+ config.n_positions - 1]`.
985
+
986
+ [What are position IDs?](../glossary#position-ids)
987
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
988
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
989
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
990
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
991
+
992
+ Two formats are allowed:
993
+ - a [`~cache_utils.Cache`] instance;
994
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
995
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
996
+ cache format.
997
+
998
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
999
+ legacy cache format will be returned.
1000
+
1001
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1002
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1003
+ of shape `(batch_size, sequence_length)`.
1004
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1005
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1006
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1007
+ model's internal embedding lookup matrix.
1008
+ use_cache (`bool`, *optional*):
1009
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1010
+ `past_key_values`).
1011
+ output_attentions (`bool`, *optional*):
1012
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1013
+ tensors for more detail.
1014
+ output_hidden_states (`bool`, *optional*):
1015
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1016
+ more detail.
1017
+ return_dict (`bool`, *optional*):
1018
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1019
+ """
1020
+
1021
+
1022
+ @add_start_docstrings(
1023
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
1024
+ PHI3_START_DOCSTRING,
1025
+ )
1026
+ class Phi3Model(Phi3PreTrainedModel):
1027
+ """
1028
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1029
+
1030
+ Args:
1031
+ config: Phi3Config
1032
+ """
1033
+
1034
+ def __init__(self, config: Phi3Config):
1035
+ super().__init__(config)
1036
+ self.padding_idx = config.pad_token_id
1037
+ self.vocab_size = config.vocab_size
1038
+
1039
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1040
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1041
+ self.layers = nn.ModuleList(
1042
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1043
+ )
1044
+ self._attn_implementation = config._attn_implementation
1045
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1046
+
1047
+ self.gradient_checkpointing = False
1048
+ # Initialize weights and apply final processing
1049
+ self.post_init()
1050
+
1051
+ def get_input_embeddings(self):
1052
+ return self.embed_tokens
1053
+
1054
+ def set_input_embeddings(self, value):
1055
+ self.embed_tokens = value
1056
+
1057
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1058
+ def forward(
1059
+ self,
1060
+ input_ids: torch.LongTensor = None,
1061
+ attention_mask: Optional[torch.Tensor] = None,
1062
+ position_ids: Optional[torch.LongTensor] = None,
1063
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1064
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1065
+ use_cache: Optional[bool] = None,
1066
+ output_attentions: Optional[bool] = None,
1067
+ output_hidden_states: Optional[bool] = None,
1068
+ return_dict: Optional[bool] = None,
1069
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1070
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1071
+ output_hidden_states = (
1072
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1073
+ )
1074
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1075
+
1076
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1077
+
1078
+ # retrieve input_ids and inputs_embeds
1079
+ if input_ids is not None and inputs_embeds is not None:
1080
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1081
+ elif input_ids is not None:
1082
+ batch_size, seq_length = input_ids.shape[:2]
1083
+ elif inputs_embeds is not None:
1084
+ batch_size, seq_length = inputs_embeds.shape[:2]
1085
+ else:
1086
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1087
+
1088
+ past_key_values_length = 0
1089
+
1090
+ if self.gradient_checkpointing and self.training:
1091
+ if use_cache:
1092
+ logger.warning_once(
1093
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1094
+ )
1095
+ use_cache = False
1096
+
1097
+ if use_cache:
1098
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1099
+ if use_legacy_cache:
1100
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1101
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1102
+
1103
+ if position_ids is None:
1104
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1105
+ position_ids = torch.arange(
1106
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1107
+ )
1108
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1109
+ else:
1110
+ position_ids = position_ids.view(-1, seq_length).long()
1111
+
1112
+ if inputs_embeds is None:
1113
+ inputs_embeds = self.embed_tokens(input_ids)
1114
+
1115
+ if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
1116
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1117
+ if is_padding_right:
1118
+ raise ValueError(
1119
+ "You are attempting to perform batched generation with padding_side='right'"
1120
+ ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
1121
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1122
+ )
1123
+
1124
+ if self._attn_implementation == 'flash_attention_2':
1125
+ # 2d mask is passed through the layers
1126
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1127
+ else:
1128
+ # 4d mask is passed through the layers
1129
+ attention_mask = _prepare_4d_causal_attention_mask(
1130
+ attention_mask,
1131
+ (batch_size, seq_length),
1132
+ inputs_embeds,
1133
+ past_key_values_length,
1134
+ sliding_window=self.config.sliding_window,
1135
+ )
1136
+
1137
+ hidden_states = inputs_embeds
1138
+
1139
+ # decoder layers
1140
+ all_hidden_states = () if output_hidden_states else None
1141
+ all_self_attns = () if output_attentions else None
1142
+ next_decoder_cache = None
1143
+
1144
+ for decoder_layer in self.layers:
1145
+ if output_hidden_states:
1146
+ all_hidden_states += (hidden_states,)
1147
+
1148
+ if self.gradient_checkpointing and self.training:
1149
+ layer_outputs = self._gradient_checkpointing_func(
1150
+ decoder_layer.__call__,
1151
+ hidden_states,
1152
+ attention_mask,
1153
+ position_ids,
1154
+ past_key_values,
1155
+ output_attentions,
1156
+ use_cache,
1157
+ )
1158
+ else:
1159
+ layer_outputs = decoder_layer(
1160
+ hidden_states,
1161
+ attention_mask=attention_mask,
1162
+ position_ids=position_ids,
1163
+ past_key_value=past_key_values,
1164
+ output_attentions=output_attentions,
1165
+ use_cache=use_cache,
1166
+ )
1167
+
1168
+ hidden_states = layer_outputs[0]
1169
+
1170
+ if use_cache:
1171
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1172
+
1173
+ if output_attentions:
1174
+ all_self_attns += (layer_outputs[1],)
1175
+
1176
+ hidden_states = self.norm(hidden_states)
1177
+
1178
+ # add hidden states from the last decoder layer
1179
+ if output_hidden_states:
1180
+ all_hidden_states += (hidden_states,)
1181
+
1182
+ next_cache = None
1183
+ if use_cache:
1184
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1185
+ if not return_dict:
1186
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1187
+ return BaseModelOutputWithPast(
1188
+ last_hidden_state=hidden_states,
1189
+ past_key_values=next_cache,
1190
+ hidden_states=all_hidden_states,
1191
+ attentions=all_self_attns,
1192
+ )
1193
+
1194
+
1195
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1196
+ _tied_weights_keys = ['lm_head.weight']
1197
+
1198
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1199
+ def __init__(self, config):
1200
+ super().__init__(config)
1201
+ self.model = Phi3Model(config)
1202
+ self.vocab_size = config.vocab_size
1203
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1204
+
1205
+ # Initialize weights and apply final processing
1206
+ self.post_init()
1207
+
1208
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1209
+ def get_input_embeddings(self):
1210
+ return self.model.embed_tokens
1211
+
1212
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1213
+ def set_input_embeddings(self, value):
1214
+ self.model.embed_tokens = value
1215
+
1216
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1217
+ def get_output_embeddings(self):
1218
+ return self.lm_head
1219
+
1220
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1221
+ def set_output_embeddings(self, new_embeddings):
1222
+ self.lm_head = new_embeddings
1223
+
1224
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1225
+ def set_decoder(self, decoder):
1226
+ self.model = decoder
1227
+
1228
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1229
+ def get_decoder(self):
1230
+ return self.model
1231
+
1232
+ # Ignore copy
1233
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1234
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1235
+ def forward(
1236
+ self,
1237
+ input_ids: torch.LongTensor = None,
1238
+ attention_mask: Optional[torch.Tensor] = None,
1239
+ position_ids: Optional[torch.LongTensor] = None,
1240
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1241
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1242
+ labels: Optional[torch.LongTensor] = None,
1243
+ use_cache: Optional[bool] = None,
1244
+ output_attentions: Optional[bool] = None,
1245
+ output_hidden_states: Optional[bool] = None,
1246
+ return_dict: Optional[bool] = None,
1247
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1248
+ r"""
1249
+ Args:
1250
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1251
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1252
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1253
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1254
+
1255
+ Returns:
1256
+
1257
+ Example:
1258
+
1259
+ ```python
1260
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1261
+
1262
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1263
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1264
+
1265
+ >>> prompt = "This is an example script ."
1266
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1267
+
1268
+ >>> # Generate
1269
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1270
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1271
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1272
+ ```"""
1273
+
1274
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1275
+ output_hidden_states = (
1276
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1277
+ )
1278
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1279
+
1280
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1281
+ outputs = self.model(
1282
+ input_ids=input_ids,
1283
+ attention_mask=attention_mask,
1284
+ position_ids=position_ids,
1285
+ past_key_values=past_key_values,
1286
+ inputs_embeds=inputs_embeds,
1287
+ use_cache=use_cache,
1288
+ output_attentions=output_attentions,
1289
+ output_hidden_states=output_hidden_states,
1290
+ return_dict=return_dict,
1291
+ )
1292
+
1293
+ hidden_states = outputs[0]
1294
+ logits = self.lm_head(hidden_states)
1295
+ logits = logits.float()
1296
+
1297
+ loss = None
1298
+ if labels is not None:
1299
+ # Shift so that tokens < n predict n
1300
+ shift_logits = logits[..., :-1, :].contiguous()
1301
+ shift_labels = labels[..., 1:].contiguous()
1302
+ # Flatten the tokens
1303
+ loss_fct = CrossEntropyLoss()
1304
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1305
+ shift_labels = shift_labels.view(-1)
1306
+ # Enable model parallelism
1307
+ shift_labels = shift_labels.to(shift_logits.device)
1308
+ loss = loss_fct(shift_logits, shift_labels)
1309
+
1310
+ if not return_dict:
1311
+ output = (logits,) + outputs[1:]
1312
+ return (loss,) + output if loss is not None else output
1313
+
1314
+ return CausalLMOutputWithPast(
1315
+ loss=loss,
1316
+ logits=logits,
1317
+ past_key_values=outputs.past_key_values,
1318
+ hidden_states=outputs.hidden_states,
1319
+ attentions=outputs.attentions,
1320
+ )
1321
+
1322
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1323
+ def prepare_inputs_for_generation(
1324
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1325
+ ):
1326
+ if past_key_values is not None:
1327
+ if isinstance(past_key_values, Cache):
1328
+ cache_length = past_key_values.get_seq_length()
1329
+ past_length = past_key_values.seen_tokens
1330
+ max_cache_length = past_key_values.get_max_length()
1331
+ else:
1332
+ cache_length = past_length = past_key_values[0][0].shape[2]
1333
+ max_cache_length = None
1334
+
1335
+ # Keep only the unprocessed tokens:
1336
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1337
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1338
+ # input)
1339
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1340
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1341
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1342
+ # input_ids based on the past_length.
1343
+ elif past_length < input_ids.shape[1]:
1344
+ input_ids = input_ids[:, past_length:]
1345
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1346
+
1347
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1348
+ if (
1349
+ max_cache_length is not None
1350
+ and attention_mask is not None
1351
+ and cache_length + input_ids.shape[1] > max_cache_length
1352
+ ):
1353
+ attention_mask = attention_mask[:, -max_cache_length:]
1354
+
1355
+ position_ids = kwargs.get('position_ids', None)
1356
+ if attention_mask is not None and position_ids is None:
1357
+ # create position_ids on the fly for batch generation
1358
+ position_ids = attention_mask.long().cumsum(-1) - 1
1359
+ position_ids.masked_fill_(attention_mask == 0, 1)
1360
+ if past_key_values:
1361
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1362
+
1363
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1364
+ if inputs_embeds is not None and past_key_values is None:
1365
+ model_inputs = {'inputs_embeds': inputs_embeds}
1366
+ else:
1367
+ model_inputs = {'input_ids': input_ids}
1368
+
1369
+ model_inputs.update(
1370
+ {
1371
+ 'position_ids': position_ids,
1372
+ 'past_key_values': past_key_values,
1373
+ 'use_cache': kwargs.get('use_cache'),
1374
+ 'attention_mask': attention_mask,
1375
+ }
1376
+ )
1377
+ return model_inputs
1378
+
1379
+ @staticmethod
1380
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1381
+ def _reorder_cache(past_key_values, beam_idx):
1382
+ reordered_past = ()
1383
+ for layer_past in past_key_values:
1384
+ reordered_past += (
1385
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1386
+ )
1387
+ return reordered_past
1388
+
1389
+
1390
+ @add_start_docstrings(
1391
+ """
1392
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1393
+
1394
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1395
+ (e.g. GPT-2) do.
1396
+
1397
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1398
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1399
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1400
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1401
+ each row of the batch).
1402
+ """,
1403
+ PHI3_START_DOCSTRING,
1404
+ )
1405
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1406
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1407
+ def __init__(self, config):
1408
+ super().__init__(config)
1409
+ self.num_labels = config.num_labels
1410
+ self.model = Phi3Model(config)
1411
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1412
+
1413
+ # Initialize weights and apply final processing
1414
+ self.post_init()
1415
+
1416
+ def get_input_embeddings(self):
1417
+ return self.model.embed_tokens
1418
+
1419
+ def set_input_embeddings(self, value):
1420
+ self.model.embed_tokens = value
1421
+
1422
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1423
+ def forward(
1424
+ self,
1425
+ input_ids: torch.LongTensor = None,
1426
+ attention_mask: Optional[torch.Tensor] = None,
1427
+ position_ids: Optional[torch.LongTensor] = None,
1428
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1429
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1430
+ labels: Optional[torch.LongTensor] = None,
1431
+ use_cache: Optional[bool] = None,
1432
+ output_attentions: Optional[bool] = None,
1433
+ output_hidden_states: Optional[bool] = None,
1434
+ return_dict: Optional[bool] = None,
1435
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1436
+ r"""
1437
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1438
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1439
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1440
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1441
+ """
1442
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1443
+
1444
+ model_outputs = self.model(
1445
+ input_ids,
1446
+ attention_mask=attention_mask,
1447
+ position_ids=position_ids,
1448
+ past_key_values=past_key_values,
1449
+ inputs_embeds=inputs_embeds,
1450
+ use_cache=use_cache,
1451
+ output_attentions=output_attentions,
1452
+ output_hidden_states=output_hidden_states,
1453
+ return_dict=return_dict,
1454
+ )
1455
+ hidden_states = model_outputs[0]
1456
+ logits = self.score(hidden_states)
1457
+
1458
+ if input_ids is not None:
1459
+ batch_size = input_ids.shape[0]
1460
+ else:
1461
+ batch_size = inputs_embeds.shape[0]
1462
+
1463
+ if self.config.pad_token_id is None and batch_size != 1:
1464
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1465
+ if self.config.pad_token_id is None:
1466
+ sequence_lengths = -1
1467
+ else:
1468
+ if input_ids is not None:
1469
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1470
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1471
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1472
+ sequence_lengths = sequence_lengths.to(logits.device)
1473
+ else:
1474
+ sequence_lengths = -1
1475
+
1476
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1477
+
1478
+ loss = None
1479
+ if labels is not None:
1480
+ labels = labels.to(logits.device)
1481
+ if self.config.problem_type is None:
1482
+ if self.num_labels == 1:
1483
+ self.config.problem_type = 'regression'
1484
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1485
+ self.config.problem_type = 'single_label_classification'
1486
+ else:
1487
+ self.config.problem_type = 'multi_label_classification'
1488
+
1489
+ if self.config.problem_type == 'regression':
1490
+ loss_fct = MSELoss()
1491
+ if self.num_labels == 1:
1492
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1493
+ else:
1494
+ loss = loss_fct(pooled_logits, labels)
1495
+ elif self.config.problem_type == 'single_label_classification':
1496
+ loss_fct = CrossEntropyLoss()
1497
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1498
+ elif self.config.problem_type == 'multi_label_classification':
1499
+ loss_fct = BCEWithLogitsLoss()
1500
+ loss = loss_fct(pooled_logits, labels)
1501
+ if not return_dict:
1502
+ output = (pooled_logits,) + model_outputs[1:]
1503
+ return ((loss,) + output) if loss is not None else output
1504
+
1505
+ return SequenceClassifierOutputWithPast(
1506
+ loss=loss,
1507
+ logits=pooled_logits,
1508
+ past_key_values=model_outputs.past_key_values,
1509
+ hidden_states=model_outputs.hidden_states,
1510
+ attentions=model_outputs.attentions,
1511
+ )
1512
+
1513
+
1514
+ @add_start_docstrings(
1515
+ """
1516
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1517
+ Named-Entity-Recognition (NER) tasks.
1518
+ """,
1519
+ PHI3_START_DOCSTRING,
1520
+ )
1521
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1522
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1523
+ def __init__(self, config: Phi3Config):
1524
+ super().__init__(config)
1525
+ self.num_labels = config.num_labels
1526
+
1527
+ self.model = Phi3Model(config)
1528
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
1529
+ classifier_dropout = config.classifier_dropout
1530
+ elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
1531
+ classifier_dropout = config.hidden_dropout
1532
+ else:
1533
+ classifier_dropout = 0.1
1534
+ self.dropout = nn.Dropout(classifier_dropout)
1535
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1536
+
1537
+ # Initialize weights and apply final processing
1538
+ self.post_init()
1539
+
1540
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1541
+ @add_code_sample_docstrings(
1542
+ checkpoint=_CHECKPOINT_FOR_DOC,
1543
+ output_type=TokenClassifierOutput,
1544
+ config_class=_CONFIG_FOR_DOC,
1545
+ )
1546
+ def forward(
1547
+ self,
1548
+ input_ids: Optional[torch.LongTensor] = None,
1549
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1550
+ attention_mask: Optional[torch.Tensor] = None,
1551
+ inputs_embeds: Optional[torch.Tensor] = None,
1552
+ labels: Optional[torch.Tensor] = None,
1553
+ use_cache: Optional[bool] = None,
1554
+ output_attentions: Optional[bool] = None,
1555
+ output_hidden_states: Optional[bool] = None,
1556
+ return_dict: Optional[bool] = None,
1557
+ **deprecated_arguments,
1558
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1559
+ r"""
1560
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1561
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1562
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1563
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1564
+ """
1565
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1566
+
1567
+ model_outputs = self.model(
1568
+ input_ids,
1569
+ past_key_values=past_key_values,
1570
+ attention_mask=attention_mask,
1571
+ inputs_embeds=inputs_embeds,
1572
+ use_cache=use_cache,
1573
+ output_attentions=output_attentions,
1574
+ output_hidden_states=output_hidden_states,
1575
+ return_dict=return_dict,
1576
+ )
1577
+
1578
+ hidden_states = model_outputs[0]
1579
+ hidden_states = self.dropout(hidden_states)
1580
+ logits = self.classifier(hidden_states)
1581
+
1582
+ loss = None
1583
+ if labels is not None:
1584
+ # move labels to correct device to enable model parallelism
1585
+ labels = labels.to(logits.device)
1586
+ batch_size, seq_length = labels.shape
1587
+ loss_fct = CrossEntropyLoss()
1588
+ loss = loss_fct(
1589
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1590
+ )
1591
+
1592
+ if not return_dict:
1593
+ output = (logits,) + model_outputs[2:]
1594
+ return ((loss,) + output) if loss is not None else output
1595
+
1596
+ return TokenClassifierOutput(
1597
+ loss=loss,
1598
+ logits=logits,
1599
+ hidden_states=model_outputs.hidden_states,
1600
+ attentions=model_outputs.attentions,
1601
+ )
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7cdf24050a0d5bb80762233ee658eede52c2101cad1b7fc7e5cf6f17357467
3
+ size 4957499771
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21fdf60a0981106fe9435e15333fdbfe3d718897452dc85053fa0b28fee680e5
3
+ size 3336407358
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8293711872
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "language_model.model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "language_model.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "language_model.model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
12
+ "language_model.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
13
+ "language_model.model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "language_model.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
15
+ "language_model.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "language_model.model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "language_model.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "language_model.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "language_model.model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "language_model.model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
21
+ "language_model.model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "language_model.model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "language_model.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
24
+ "language_model.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "language_model.model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "language_model.model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "language_model.model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "language_model.model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "language_model.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "language_model.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "language_model.model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "language_model.model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "language_model.model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "language_model.model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "language_model.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "language_model.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "language_model.model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "language_model.model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "language_model.model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "language_model.model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "language_model.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
42
+ "language_model.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "language_model.model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "language_model.model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "language_model.model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "language_model.model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "language_model.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
48
+ "language_model.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
49
+ "language_model.model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "language_model.model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
51
+ "language_model.model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "language_model.model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "language_model.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "language_model.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "language_model.model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "language_model.model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "language_model.model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "language_model.model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "language_model.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
60
+ "language_model.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "language_model.model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "language_model.model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "language_model.model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "language_model.model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "language_model.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
66
+ "language_model.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
67
+ "language_model.model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "language_model.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
69
+ "language_model.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
70
+ "language_model.model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
71
+ "language_model.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
72
+ "language_model.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "language_model.model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "language_model.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
75
+ "language_model.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
76
+ "language_model.model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
77
+ "language_model.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
78
+ "language_model.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
79
+ "language_model.model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
80
+ "language_model.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "language_model.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "language_model.model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "language_model.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
84
+ "language_model.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "language_model.model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "language_model.model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
87
+ "language_model.model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
88
+ "language_model.model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
89
+ "language_model.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
90
+ "language_model.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
91
+ "language_model.model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
92
+ "language_model.model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
93
+ "language_model.model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
94
+ "language_model.model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
95
+ "language_model.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
96
+ "language_model.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
97
+ "language_model.model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
98
+ "language_model.model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
99
+ "language_model.model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
100
+ "language_model.model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
101
+ "language_model.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
102
+ "language_model.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
103
+ "language_model.model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
104
+ "language_model.model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
105
+ "language_model.model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
106
+ "language_model.model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
107
+ "language_model.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
108
+ "language_model.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
109
+ "language_model.model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
110
+ "language_model.model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
111
+ "language_model.model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
112
+ "language_model.model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
113
+ "language_model.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
114
+ "language_model.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
115
+ "language_model.model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
116
+ "language_model.model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
117
+ "language_model.model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
118
+ "language_model.model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
119
+ "language_model.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
120
+ "language_model.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
121
+ "language_model.model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
122
+ "language_model.model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
123
+ "language_model.model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
124
+ "language_model.model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
125
+ "language_model.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
126
+ "language_model.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
127
+ "language_model.model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
128
+ "language_model.model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
129
+ "language_model.model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
130
+ "language_model.model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
131
+ "language_model.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
132
+ "language_model.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
133
+ "language_model.model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
134
+ "language_model.model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
135
+ "language_model.model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
136
+ "language_model.model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
137
+ "language_model.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
138
+ "language_model.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
139
+ "language_model.model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
140
+ "language_model.model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
141
+ "language_model.model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
142
+ "language_model.model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
143
+ "language_model.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "language_model.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "language_model.model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "language_model.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
147
+ "language_model.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "language_model.model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "language_model.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
150
+ "language_model.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "language_model.model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "language_model.model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "language_model.model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "language_model.model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "language_model.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
156
+ "language_model.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
157
+ "language_model.model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "language_model.model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
159
+ "language_model.model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "language_model.model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "language_model.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "language_model.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "language_model.model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "language_model.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "language_model.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "language_model.model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "language_model.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
168
+ "language_model.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
169
+ "language_model.model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "language_model.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
171
+ "language_model.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "language_model.model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
173
+ "language_model.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
174
+ "language_model.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "language_model.model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "language_model.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
177
+ "language_model.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "language_model.model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
179
+ "language_model.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
180
+ "language_model.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
181
+ "language_model.model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "language_model.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "language_model.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
184
+ "language_model.model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
185
+ "language_model.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
186
+ "language_model.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
187
+ "language_model.model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "language_model.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
189
+ "language_model.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
190
+ "language_model.model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
191
+ "language_model.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
192
+ "language_model.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
193
+ "language_model.model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "language_model.model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
195
+ "language_model.model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
196
+ "language_model.model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
197
+ "language_model.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
198
+ "language_model.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
199
+ "language_model.model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
200
+ "language_model.model.norm.weight": "pytorch_model-00002-of-00002.bin",
201
+ "mlp1.0.bias": "pytorch_model-00002-of-00002.bin",
202
+ "mlp1.0.weight": "pytorch_model-00002-of-00002.bin",
203
+ "mlp1.1.bias": "pytorch_model-00002-of-00002.bin",
204
+ "mlp1.1.weight": "pytorch_model-00002-of-00002.bin",
205
+ "mlp1.3.bias": "pytorch_model-00002-of-00002.bin",
206
+ "mlp1.3.weight": "pytorch_model-00002-of-00002.bin",
207
+ "vision_model.embeddings.class_embedding": "pytorch_model-00001-of-00002.bin",
208
+ "vision_model.embeddings.patch_embedding.bias": "pytorch_model-00001-of-00002.bin",
209
+ "vision_model.embeddings.patch_embedding.weight": "pytorch_model-00001-of-00002.bin",
210
+ "vision_model.embeddings.position_embedding": "pytorch_model-00001-of-00002.bin",
211
+ "vision_model.encoder.layers.0.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
212
+ "vision_model.encoder.layers.0.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
213
+ "vision_model.encoder.layers.0.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
214
+ "vision_model.encoder.layers.0.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
215
+ "vision_model.encoder.layers.0.ls1": "pytorch_model-00001-of-00002.bin",
216
+ "vision_model.encoder.layers.0.ls2": "pytorch_model-00001-of-00002.bin",
217
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
218
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
219
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
220
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
221
+ "vision_model.encoder.layers.0.norm1.bias": "pytorch_model-00001-of-00002.bin",
222
+ "vision_model.encoder.layers.0.norm1.weight": "pytorch_model-00001-of-00002.bin",
223
+ "vision_model.encoder.layers.0.norm2.bias": "pytorch_model-00001-of-00002.bin",
224
+ "vision_model.encoder.layers.0.norm2.weight": "pytorch_model-00001-of-00002.bin",
225
+ "vision_model.encoder.layers.1.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
226
+ "vision_model.encoder.layers.1.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
227
+ "vision_model.encoder.layers.1.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
228
+ "vision_model.encoder.layers.1.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
229
+ "vision_model.encoder.layers.1.ls1": "pytorch_model-00001-of-00002.bin",
230
+ "vision_model.encoder.layers.1.ls2": "pytorch_model-00001-of-00002.bin",
231
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
232
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
233
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
234
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
235
+ "vision_model.encoder.layers.1.norm1.bias": "pytorch_model-00001-of-00002.bin",
236
+ "vision_model.encoder.layers.1.norm1.weight": "pytorch_model-00001-of-00002.bin",
237
+ "vision_model.encoder.layers.1.norm2.bias": "pytorch_model-00001-of-00002.bin",
238
+ "vision_model.encoder.layers.1.norm2.weight": "pytorch_model-00001-of-00002.bin",
239
+ "vision_model.encoder.layers.10.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
240
+ "vision_model.encoder.layers.10.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "vision_model.encoder.layers.10.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
242
+ "vision_model.encoder.layers.10.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
243
+ "vision_model.encoder.layers.10.ls1": "pytorch_model-00001-of-00002.bin",
244
+ "vision_model.encoder.layers.10.ls2": "pytorch_model-00001-of-00002.bin",
245
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
246
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
247
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
248
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
249
+ "vision_model.encoder.layers.10.norm1.bias": "pytorch_model-00001-of-00002.bin",
250
+ "vision_model.encoder.layers.10.norm1.weight": "pytorch_model-00001-of-00002.bin",
251
+ "vision_model.encoder.layers.10.norm2.bias": "pytorch_model-00001-of-00002.bin",
252
+ "vision_model.encoder.layers.10.norm2.weight": "pytorch_model-00001-of-00002.bin",
253
+ "vision_model.encoder.layers.11.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
254
+ "vision_model.encoder.layers.11.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "vision_model.encoder.layers.11.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
256
+ "vision_model.encoder.layers.11.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
257
+ "vision_model.encoder.layers.11.ls1": "pytorch_model-00001-of-00002.bin",
258
+ "vision_model.encoder.layers.11.ls2": "pytorch_model-00001-of-00002.bin",
259
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
260
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
261
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
262
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
263
+ "vision_model.encoder.layers.11.norm1.bias": "pytorch_model-00001-of-00002.bin",
264
+ "vision_model.encoder.layers.11.norm1.weight": "pytorch_model-00001-of-00002.bin",
265
+ "vision_model.encoder.layers.11.norm2.bias": "pytorch_model-00001-of-00002.bin",
266
+ "vision_model.encoder.layers.11.norm2.weight": "pytorch_model-00001-of-00002.bin",
267
+ "vision_model.encoder.layers.12.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
268
+ "vision_model.encoder.layers.12.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "vision_model.encoder.layers.12.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
270
+ "vision_model.encoder.layers.12.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
271
+ "vision_model.encoder.layers.12.ls1": "pytorch_model-00001-of-00002.bin",
272
+ "vision_model.encoder.layers.12.ls2": "pytorch_model-00001-of-00002.bin",
273
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
274
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
275
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
276
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
277
+ "vision_model.encoder.layers.12.norm1.bias": "pytorch_model-00001-of-00002.bin",
278
+ "vision_model.encoder.layers.12.norm1.weight": "pytorch_model-00001-of-00002.bin",
279
+ "vision_model.encoder.layers.12.norm2.bias": "pytorch_model-00001-of-00002.bin",
280
+ "vision_model.encoder.layers.12.norm2.weight": "pytorch_model-00001-of-00002.bin",
281
+ "vision_model.encoder.layers.13.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
282
+ "vision_model.encoder.layers.13.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
283
+ "vision_model.encoder.layers.13.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
284
+ "vision_model.encoder.layers.13.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
285
+ "vision_model.encoder.layers.13.ls1": "pytorch_model-00001-of-00002.bin",
286
+ "vision_model.encoder.layers.13.ls2": "pytorch_model-00001-of-00002.bin",
287
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
288
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
289
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
290
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
291
+ "vision_model.encoder.layers.13.norm1.bias": "pytorch_model-00001-of-00002.bin",
292
+ "vision_model.encoder.layers.13.norm1.weight": "pytorch_model-00001-of-00002.bin",
293
+ "vision_model.encoder.layers.13.norm2.bias": "pytorch_model-00001-of-00002.bin",
294
+ "vision_model.encoder.layers.13.norm2.weight": "pytorch_model-00001-of-00002.bin",
295
+ "vision_model.encoder.layers.14.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
296
+ "vision_model.encoder.layers.14.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
297
+ "vision_model.encoder.layers.14.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
298
+ "vision_model.encoder.layers.14.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
299
+ "vision_model.encoder.layers.14.ls1": "pytorch_model-00001-of-00002.bin",
300
+ "vision_model.encoder.layers.14.ls2": "pytorch_model-00001-of-00002.bin",
301
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
302
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
303
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
304
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
305
+ "vision_model.encoder.layers.14.norm1.bias": "pytorch_model-00001-of-00002.bin",
306
+ "vision_model.encoder.layers.14.norm1.weight": "pytorch_model-00001-of-00002.bin",
307
+ "vision_model.encoder.layers.14.norm2.bias": "pytorch_model-00001-of-00002.bin",
308
+ "vision_model.encoder.layers.14.norm2.weight": "pytorch_model-00001-of-00002.bin",
309
+ "vision_model.encoder.layers.15.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
310
+ "vision_model.encoder.layers.15.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "vision_model.encoder.layers.15.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
312
+ "vision_model.encoder.layers.15.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
313
+ "vision_model.encoder.layers.15.ls1": "pytorch_model-00001-of-00002.bin",
314
+ "vision_model.encoder.layers.15.ls2": "pytorch_model-00001-of-00002.bin",
315
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
316
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
317
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
318
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
319
+ "vision_model.encoder.layers.15.norm1.bias": "pytorch_model-00001-of-00002.bin",
320
+ "vision_model.encoder.layers.15.norm1.weight": "pytorch_model-00001-of-00002.bin",
321
+ "vision_model.encoder.layers.15.norm2.bias": "pytorch_model-00001-of-00002.bin",
322
+ "vision_model.encoder.layers.15.norm2.weight": "pytorch_model-00001-of-00002.bin",
323
+ "vision_model.encoder.layers.16.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
324
+ "vision_model.encoder.layers.16.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "vision_model.encoder.layers.16.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
326
+ "vision_model.encoder.layers.16.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
327
+ "vision_model.encoder.layers.16.ls1": "pytorch_model-00001-of-00002.bin",
328
+ "vision_model.encoder.layers.16.ls2": "pytorch_model-00001-of-00002.bin",
329
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
330
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
331
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
332
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
333
+ "vision_model.encoder.layers.16.norm1.bias": "pytorch_model-00001-of-00002.bin",
334
+ "vision_model.encoder.layers.16.norm1.weight": "pytorch_model-00001-of-00002.bin",
335
+ "vision_model.encoder.layers.16.norm2.bias": "pytorch_model-00001-of-00002.bin",
336
+ "vision_model.encoder.layers.16.norm2.weight": "pytorch_model-00001-of-00002.bin",
337
+ "vision_model.encoder.layers.17.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
338
+ "vision_model.encoder.layers.17.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
339
+ "vision_model.encoder.layers.17.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
340
+ "vision_model.encoder.layers.17.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
341
+ "vision_model.encoder.layers.17.ls1": "pytorch_model-00001-of-00002.bin",
342
+ "vision_model.encoder.layers.17.ls2": "pytorch_model-00001-of-00002.bin",
343
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
344
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
345
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
346
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
347
+ "vision_model.encoder.layers.17.norm1.bias": "pytorch_model-00001-of-00002.bin",
348
+ "vision_model.encoder.layers.17.norm1.weight": "pytorch_model-00001-of-00002.bin",
349
+ "vision_model.encoder.layers.17.norm2.bias": "pytorch_model-00001-of-00002.bin",
350
+ "vision_model.encoder.layers.17.norm2.weight": "pytorch_model-00001-of-00002.bin",
351
+ "vision_model.encoder.layers.18.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
352
+ "vision_model.encoder.layers.18.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
353
+ "vision_model.encoder.layers.18.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
354
+ "vision_model.encoder.layers.18.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
355
+ "vision_model.encoder.layers.18.ls1": "pytorch_model-00001-of-00002.bin",
356
+ "vision_model.encoder.layers.18.ls2": "pytorch_model-00001-of-00002.bin",
357
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
358
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
359
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
360
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
361
+ "vision_model.encoder.layers.18.norm1.bias": "pytorch_model-00001-of-00002.bin",
362
+ "vision_model.encoder.layers.18.norm1.weight": "pytorch_model-00001-of-00002.bin",
363
+ "vision_model.encoder.layers.18.norm2.bias": "pytorch_model-00001-of-00002.bin",
364
+ "vision_model.encoder.layers.18.norm2.weight": "pytorch_model-00001-of-00002.bin",
365
+ "vision_model.encoder.layers.19.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
366
+ "vision_model.encoder.layers.19.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
367
+ "vision_model.encoder.layers.19.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
368
+ "vision_model.encoder.layers.19.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
369
+ "vision_model.encoder.layers.19.ls1": "pytorch_model-00001-of-00002.bin",
370
+ "vision_model.encoder.layers.19.ls2": "pytorch_model-00001-of-00002.bin",
371
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
372
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
373
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
374
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
375
+ "vision_model.encoder.layers.19.norm1.bias": "pytorch_model-00001-of-00002.bin",
376
+ "vision_model.encoder.layers.19.norm1.weight": "pytorch_model-00001-of-00002.bin",
377
+ "vision_model.encoder.layers.19.norm2.bias": "pytorch_model-00001-of-00002.bin",
378
+ "vision_model.encoder.layers.19.norm2.weight": "pytorch_model-00001-of-00002.bin",
379
+ "vision_model.encoder.layers.2.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
380
+ "vision_model.encoder.layers.2.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
381
+ "vision_model.encoder.layers.2.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
382
+ "vision_model.encoder.layers.2.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
383
+ "vision_model.encoder.layers.2.ls1": "pytorch_model-00001-of-00002.bin",
384
+ "vision_model.encoder.layers.2.ls2": "pytorch_model-00001-of-00002.bin",
385
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
386
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
387
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
388
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
389
+ "vision_model.encoder.layers.2.norm1.bias": "pytorch_model-00001-of-00002.bin",
390
+ "vision_model.encoder.layers.2.norm1.weight": "pytorch_model-00001-of-00002.bin",
391
+ "vision_model.encoder.layers.2.norm2.bias": "pytorch_model-00001-of-00002.bin",
392
+ "vision_model.encoder.layers.2.norm2.weight": "pytorch_model-00001-of-00002.bin",
393
+ "vision_model.encoder.layers.20.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
394
+ "vision_model.encoder.layers.20.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
395
+ "vision_model.encoder.layers.20.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
396
+ "vision_model.encoder.layers.20.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
397
+ "vision_model.encoder.layers.20.ls1": "pytorch_model-00001-of-00002.bin",
398
+ "vision_model.encoder.layers.20.ls2": "pytorch_model-00001-of-00002.bin",
399
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
400
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
401
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
402
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
403
+ "vision_model.encoder.layers.20.norm1.bias": "pytorch_model-00001-of-00002.bin",
404
+ "vision_model.encoder.layers.20.norm1.weight": "pytorch_model-00001-of-00002.bin",
405
+ "vision_model.encoder.layers.20.norm2.bias": "pytorch_model-00001-of-00002.bin",
406
+ "vision_model.encoder.layers.20.norm2.weight": "pytorch_model-00001-of-00002.bin",
407
+ "vision_model.encoder.layers.21.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
408
+ "vision_model.encoder.layers.21.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
409
+ "vision_model.encoder.layers.21.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
410
+ "vision_model.encoder.layers.21.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
411
+ "vision_model.encoder.layers.21.ls1": "pytorch_model-00001-of-00002.bin",
412
+ "vision_model.encoder.layers.21.ls2": "pytorch_model-00001-of-00002.bin",
413
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
414
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
415
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
416
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
417
+ "vision_model.encoder.layers.21.norm1.bias": "pytorch_model-00001-of-00002.bin",
418
+ "vision_model.encoder.layers.21.norm1.weight": "pytorch_model-00001-of-00002.bin",
419
+ "vision_model.encoder.layers.21.norm2.bias": "pytorch_model-00001-of-00002.bin",
420
+ "vision_model.encoder.layers.21.norm2.weight": "pytorch_model-00001-of-00002.bin",
421
+ "vision_model.encoder.layers.22.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
422
+ "vision_model.encoder.layers.22.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
423
+ "vision_model.encoder.layers.22.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
424
+ "vision_model.encoder.layers.22.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
425
+ "vision_model.encoder.layers.22.ls1": "pytorch_model-00001-of-00002.bin",
426
+ "vision_model.encoder.layers.22.ls2": "pytorch_model-00001-of-00002.bin",
427
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
428
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
429
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
430
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
431
+ "vision_model.encoder.layers.22.norm1.bias": "pytorch_model-00001-of-00002.bin",
432
+ "vision_model.encoder.layers.22.norm1.weight": "pytorch_model-00001-of-00002.bin",
433
+ "vision_model.encoder.layers.22.norm2.bias": "pytorch_model-00001-of-00002.bin",
434
+ "vision_model.encoder.layers.22.norm2.weight": "pytorch_model-00001-of-00002.bin",
435
+ "vision_model.encoder.layers.23.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
436
+ "vision_model.encoder.layers.23.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
437
+ "vision_model.encoder.layers.23.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
438
+ "vision_model.encoder.layers.23.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
439
+ "vision_model.encoder.layers.23.ls1": "pytorch_model-00001-of-00002.bin",
440
+ "vision_model.encoder.layers.23.ls2": "pytorch_model-00001-of-00002.bin",
441
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
442
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
443
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
444
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
445
+ "vision_model.encoder.layers.23.norm1.bias": "pytorch_model-00001-of-00002.bin",
446
+ "vision_model.encoder.layers.23.norm1.weight": "pytorch_model-00001-of-00002.bin",
447
+ "vision_model.encoder.layers.23.norm2.bias": "pytorch_model-00001-of-00002.bin",
448
+ "vision_model.encoder.layers.23.norm2.weight": "pytorch_model-00001-of-00002.bin",
449
+ "vision_model.encoder.layers.3.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
450
+ "vision_model.encoder.layers.3.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
451
+ "vision_model.encoder.layers.3.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
452
+ "vision_model.encoder.layers.3.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
453
+ "vision_model.encoder.layers.3.ls1": "pytorch_model-00001-of-00002.bin",
454
+ "vision_model.encoder.layers.3.ls2": "pytorch_model-00001-of-00002.bin",
455
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
456
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
457
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
458
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
459
+ "vision_model.encoder.layers.3.norm1.bias": "pytorch_model-00001-of-00002.bin",
460
+ "vision_model.encoder.layers.3.norm1.weight": "pytorch_model-00001-of-00002.bin",
461
+ "vision_model.encoder.layers.3.norm2.bias": "pytorch_model-00001-of-00002.bin",
462
+ "vision_model.encoder.layers.3.norm2.weight": "pytorch_model-00001-of-00002.bin",
463
+ "vision_model.encoder.layers.4.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
464
+ "vision_model.encoder.layers.4.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
465
+ "vision_model.encoder.layers.4.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
466
+ "vision_model.encoder.layers.4.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
467
+ "vision_model.encoder.layers.4.ls1": "pytorch_model-00001-of-00002.bin",
468
+ "vision_model.encoder.layers.4.ls2": "pytorch_model-00001-of-00002.bin",
469
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
470
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
471
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
472
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
473
+ "vision_model.encoder.layers.4.norm1.bias": "pytorch_model-00001-of-00002.bin",
474
+ "vision_model.encoder.layers.4.norm1.weight": "pytorch_model-00001-of-00002.bin",
475
+ "vision_model.encoder.layers.4.norm2.bias": "pytorch_model-00001-of-00002.bin",
476
+ "vision_model.encoder.layers.4.norm2.weight": "pytorch_model-00001-of-00002.bin",
477
+ "vision_model.encoder.layers.5.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
478
+ "vision_model.encoder.layers.5.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
479
+ "vision_model.encoder.layers.5.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
480
+ "vision_model.encoder.layers.5.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
481
+ "vision_model.encoder.layers.5.ls1": "pytorch_model-00001-of-00002.bin",
482
+ "vision_model.encoder.layers.5.ls2": "pytorch_model-00001-of-00002.bin",
483
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
484
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
485
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
486
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
487
+ "vision_model.encoder.layers.5.norm1.bias": "pytorch_model-00001-of-00002.bin",
488
+ "vision_model.encoder.layers.5.norm1.weight": "pytorch_model-00001-of-00002.bin",
489
+ "vision_model.encoder.layers.5.norm2.bias": "pytorch_model-00001-of-00002.bin",
490
+ "vision_model.encoder.layers.5.norm2.weight": "pytorch_model-00001-of-00002.bin",
491
+ "vision_model.encoder.layers.6.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
492
+ "vision_model.encoder.layers.6.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
493
+ "vision_model.encoder.layers.6.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
494
+ "vision_model.encoder.layers.6.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
495
+ "vision_model.encoder.layers.6.ls1": "pytorch_model-00001-of-00002.bin",
496
+ "vision_model.encoder.layers.6.ls2": "pytorch_model-00001-of-00002.bin",
497
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
498
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
499
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
500
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
501
+ "vision_model.encoder.layers.6.norm1.bias": "pytorch_model-00001-of-00002.bin",
502
+ "vision_model.encoder.layers.6.norm1.weight": "pytorch_model-00001-of-00002.bin",
503
+ "vision_model.encoder.layers.6.norm2.bias": "pytorch_model-00001-of-00002.bin",
504
+ "vision_model.encoder.layers.6.norm2.weight": "pytorch_model-00001-of-00002.bin",
505
+ "vision_model.encoder.layers.7.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
506
+ "vision_model.encoder.layers.7.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
507
+ "vision_model.encoder.layers.7.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
508
+ "vision_model.encoder.layers.7.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
509
+ "vision_model.encoder.layers.7.ls1": "pytorch_model-00001-of-00002.bin",
510
+ "vision_model.encoder.layers.7.ls2": "pytorch_model-00001-of-00002.bin",
511
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
512
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
513
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
514
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
515
+ "vision_model.encoder.layers.7.norm1.bias": "pytorch_model-00001-of-00002.bin",
516
+ "vision_model.encoder.layers.7.norm1.weight": "pytorch_model-00001-of-00002.bin",
517
+ "vision_model.encoder.layers.7.norm2.bias": "pytorch_model-00001-of-00002.bin",
518
+ "vision_model.encoder.layers.7.norm2.weight": "pytorch_model-00001-of-00002.bin",
519
+ "vision_model.encoder.layers.8.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
520
+ "vision_model.encoder.layers.8.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
521
+ "vision_model.encoder.layers.8.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
522
+ "vision_model.encoder.layers.8.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
523
+ "vision_model.encoder.layers.8.ls1": "pytorch_model-00001-of-00002.bin",
524
+ "vision_model.encoder.layers.8.ls2": "pytorch_model-00001-of-00002.bin",
525
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
526
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
527
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
528
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
529
+ "vision_model.encoder.layers.8.norm1.bias": "pytorch_model-00001-of-00002.bin",
530
+ "vision_model.encoder.layers.8.norm1.weight": "pytorch_model-00001-of-00002.bin",
531
+ "vision_model.encoder.layers.8.norm2.bias": "pytorch_model-00001-of-00002.bin",
532
+ "vision_model.encoder.layers.8.norm2.weight": "pytorch_model-00001-of-00002.bin",
533
+ "vision_model.encoder.layers.9.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
534
+ "vision_model.encoder.layers.9.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
535
+ "vision_model.encoder.layers.9.attn.qkv.bias": "pytorch_model-00001-of-00002.bin",
536
+ "vision_model.encoder.layers.9.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
537
+ "vision_model.encoder.layers.9.ls1": "pytorch_model-00001-of-00002.bin",
538
+ "vision_model.encoder.layers.9.ls2": "pytorch_model-00001-of-00002.bin",
539
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
540
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
541
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
542
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
543
+ "vision_model.encoder.layers.9.norm1.bias": "pytorch_model-00001-of-00002.bin",
544
+ "vision_model.encoder.layers.9.norm1.weight": "pytorch_model-00001-of-00002.bin",
545
+ "vision_model.encoder.layers.9.norm2.bias": "pytorch_model-00001-of-00002.bin",
546
+ "vision_model.encoder.layers.9.norm2.weight": "pytorch_model-00001-of-00002.bin"
547
+ }
548
+ }