from typing import Dict, List, Any import torch import os import PIL from PIL import Image from torch import autocast from diffusers import StableDiffusionPipeline,EulerDiscreteScheduler import base64 from io import BytesIO # set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device.type != 'cuda': raise ValueError("need to run on GPU") class EndpointHandler(): def __init__(self, path=""): # load the optimized model self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16,low_cpu_mem_usage=False) self.pipe.scheduler = EulerDiscreteScheduler.from_config(self.pipe.scheduler.config) self.pipe = self.pipe.to(device) def __call__(self, data: Any) -> Dict[str, str]: """ Args: data (Any): Includes the input data and the parameters for the inference. Returns: Dict[str, str]: Dictionary with the base64 encoded image. """ inputs = data.pop("inputs", data) # positive_prompt = data.pop("positive_prompt", None) negative_prompt = data.pop("negative_prompt", None) height = data.pop("height", 512) width = data.pop("width", 512) inference_steps = data.pop("inference_steps", 25) guidance_scale = data.pop("guidance_scale", 7.5) # Run inference pipeline with autocast(device.type): if negative_prompt is None: print(str(inputs), str(height), str(width), str(guidance_scale)) image = self.pipe(prompt=inputs, height=height, width=width, guidance_scale=float(guidance_scale),num_inference_steps=inference_steps) image = image.images[0] else: print(str(inputs), str(height), str(negative_prompt), str(width), str(guidance_scale)) image = self.pipe(prompt=inputs, negative_prompt=negative_prompt, height=height, width=width, guidance_scale=float(guidance_scale),num_inference_steps=inference_steps) image = image.images[0] # Encode image as base64 buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()) # Postprocess the prediction return {"image": img_str.decode()} def decode_base64_image(self, image_string): base64_image = base64.b64decode(image_string) buffer = BytesIO(base64_image) image = Image.open(buffer) return image