|
from typing import Dict, List, Any |
|
import torch |
|
import os |
|
import PIL |
|
from PIL import Image |
|
|
|
from torch import autocast |
|
from diffusers import StableDiffusionPipeline,EulerDiscreteScheduler |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
if device.type != 'cuda': |
|
raise ValueError("need to run on GPU") |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16,low_cpu_mem_usage=False) |
|
self.pipe.scheduler = EulerDiscreteScheduler.from_config(self.pipe.scheduler.config) |
|
self.pipe = self.pipe.to(device) |
|
|
|
|
|
def __call__(self, data: Any) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (Any): Includes the input data and the parameters for the inference. |
|
|
|
Returns: |
|
Dict[str, str]: Dictionary with the base64 encoded image. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
|
|
negative_prompt = data.pop("negative_prompt", None) |
|
height = data.pop("height", 512) |
|
width = data.pop("width", 512) |
|
inference_steps = data.pop("inference_steps", 25) |
|
guidance_scale = data.pop("guidance_scale", 7.5) |
|
|
|
|
|
with autocast(device.type): |
|
if negative_prompt is None: |
|
print(str(inputs), str(height), str(width), str(guidance_scale)) |
|
image = self.pipe(prompt=inputs, height=height, width=width, guidance_scale=float(guidance_scale),num_inference_steps=inference_steps) |
|
image = image.images[0] |
|
else: |
|
print(str(inputs), str(height), str(negative_prompt), str(width), str(guidance_scale)) |
|
image = self.pipe(prompt=inputs, negative_prompt=negative_prompt, height=height, width=width, guidance_scale=float(guidance_scale),num_inference_steps=inference_steps) |
|
image = image.images[0] |
|
|
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
|
|
return {"image": img_str.decode()} |
|
|
|
def decode_base64_image(self, image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
image = Image.open(buffer) |
|
return image |
|
|