|
import argparse |
|
from src.data_loader import load_data |
|
from src.model import load_model |
|
from src.trainer import train_model |
|
from src.evaluate import evaluate_model |
|
from src.inference import infer_resume |
|
from transformers import AutoTokenizer |
|
|
|
def run(): |
|
parser = argparse.ArgumentParser(description="ATS Resume Optimizer") |
|
parser.add_argument("mode", choices=["train", "evaluate", "infer"], help="Mode to run the script") |
|
parser.add_argument("--resume", type=str, help="Path to resume for inference") |
|
args = parser.parse_args() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") |
|
datasets = load_data(tokenizer) |
|
model = load_model() |
|
|
|
if args.mode == "train": |
|
train_model(model, datasets) |
|
elif args.mode == "evaluate": |
|
evaluate_model(model, datasets) |
|
elif args.mode == "infer": |
|
if not args.resume: |
|
raise ValueError("Resume path must be provided in infer mode.") |
|
infer_resume(model, tokenizer, args.resume) |
|
|
|
if __name__ == "__main__": |
|
run() |